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Abstract 

 

A long-desired component to the U.S. operational observing systems is the 

capability to measure vertical profiles of wind, temperature and moisture in the lower 

troposphere at high spatial and temporal resolution.  This study proposes that such 

profiling could be done by small unmanned aerial vehicles (UAVs) assuming that 

autonomous flights at least through the depth of the boundary layer be permitted.  Since 

we do not yet have FAA permission to test such an observing network, we examine the 

potential improvement that a UAV network could have on storm-scale numerical weather 

prediction using an Observation System Simulation Experiment (OSSE) approach. 

An OSSE is performed over the state of Oklahoma in which we assume that a 

UAV could be launched from 110 Oklahoma Mesonet stations every hour, fly vertically 

to an assigned maximum altitude and return to its charging station, providing soundings 

at a roughly 35 km horizontal resolution.  We begin with a case study of convective 

initiation (CI) as a compromise between a fair weather day and one with extensive 

ongoing convection.  The OU ARPS model provides a nature run at high (1 km) 

resolution, while the control run and OSSE experiments are done with the WRF-ARW 

model at 3 km.  To simulate the effect of data from dozens of observing systems already 

included in operational models, the nature run data volume is sampled at synoptic scales 

and inserted into the control run via a 6-hr data assimilation (DA) period.  Simulated 

hourly UAV temperature, moisture and wind data, with expected errors, are then added 

to the DA, followed by 12-hr forecasts.  The analyses and forecasts are examined to assess 



xx 

 

the added value of UAV data.  Tests are run to measure the impact of varying the 

maximum UAV altitude and the spatial density of UAV observations. 

Initial results clearly show an improved boundary layer structure and subsequent 

CI location and timing when UAV data are added to the control 

experiment.  Additionally, early findings indicate flight altitude and network density can 

play a role in the quality of the DA analysis and subsequent forecast of convective 

initiation. Although sensitivities to the quality of the moisture analysis are noted, the 

results here suggest that a real-world deployment of automated UAVs could have a 

positive impact on atmospheric analyses and short-term numerical weather prediction. 
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Chapter 1 

 

1.1 Motivation 

 

In their 2009 study Observing Weather and Climate from the Ground Up: A 

Nationwide Network of Networks, the National Research Council (NRC) discussed many 

of the ongoing challenges associated with atmospheric sensing, data collection, and data 

dissemination. The NRC proposed a “nationwide network of networks” (NNON) to 

increase and standardize lower-tropospheric data (NRC, 2009). Through this work, the 

NRC recommended improvements to augment current observing networks that could 

potentially lead to improvements in numerical weather prediction (NWP). A related 

recommendation is the need for mesoscale models to perform observing system 

experiments (OSEs) as well as observing system simulation experiments (OSSEs) to 

assess the value of adding new observing systems to the current networks (NRC, 2009). 

Through this, current observing networks could effectively become testbeds with the goal 

of identifying weak points in current observing strategies and finding optimal network 

configurations for available resources. 

 The NRC also reported that one of the most prominent regions of the atmosphere that 

requires improved sampling is the planetary boundary layer (PBL). In a 2013 article, 

Stalker et al. succinctly summarized this need for better sampling of the boundary layer 

by stating that existing observing networks severely lack the horizontal and vertical 

resolution to study and predict mesoscale processes, especially pertaining to profiles of 

the PBL.  
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Dabberdt et al. (2005) also discuss the need for high-frequency spatial and temporal 

sampling of the PBL, especially when forecasting convective weather. Even with the 

availability of convection allowing numerical weather prediction models, the lack of PBL 

observations assimilated into numerical simulations may diminish the value of convective 

forecasts. Dabberdt et al. (2005) argue that a PBL profiling network could convey 

information about the low-level environment, such as the strength of a capping inversion, 

into numerical models that could lead to improved forecasts. Furthermore, even aside 

from numerical modeling considerations, frequent thermodynamic and kinematic profiles 

observed within the PBL could be valuable for convective now-casting and allow for 

forecasters to deliver more timely and accurate warnings.  

Currently, there are very few operational networks in place that can accurately 

observe processes in the PBL. The most well-known of these networks is the global 

radiosonde network. While this network undoubtedly provides valuable in-situ 

observations for both forecasters and NWP, radiosondes generally are released only twice 

daily with a very coarse spatial coverage. Additionally, radiosondes have uncontrolled 

ascent rates and are designed primarily to obtain a full atmospheric profile within a 

reasonable flight time to support forecast operations, not to take high resolution 

observations of the PBL. While there are other instruments capable of such high 

resolution PBL observations, such as Doppler Light Detection and Ranging (LiDAR) 

instruments and Atmospheric Emitted Radiance Interferometers (AERI) (Geerts et al. 

2017)), these are primarily used for research rather than operational purposes. Additional 

observing networks, such as the National Weather Service’s Weather Surveillance Radar 

88 Doppler (WSR-88D) radars and their limitations in sampling the PBL are highlighted 
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by Dabberdt et al. 2005. They conclude that the biggest gap in our current in-situ 

observing network are temperature and moisture measurements in the PBL.  

 

 

1.2 Unmanned Aerial Vehicles in Meteorology 

It is proposed that unmanned aerial vehicles (UAVs) are a viable option to fill the 

sampling void within the PBL. The Collaboration Leading Operation UAS Development 

for Meteorology and Atmospheric Physics (CLOUD-MAP) initiative (Smith et al. 2017) 

was designed for this purpose. The goal of the project is to develop UAV technologies 

that can autonomously sample the PBL. Not only does this multi-university collaborative 

initiative promote the development of the UAV technologies, but also promotes the 

development of public policy that will allow UAVs to use additional airspace for 

atmospheric research and operational data sampling.  

CLOUD-MAP is not the first initiative that has employed UAVs for PBL 

measurements. Bonin et al. (2013a) conducted an in-depth study of the early evening 

transition using temperature, humidity, and pressure profiles collected by the Small 

Multifunction Research and Teaching Sonde (SMARTSonde) that was developed at the 

University of Oklahoma (OU) Advanced Radar Research Center (ARRC). Estimates of 

sensible and latent heat fluxes were determined from the data collected by the 

SMARTSonde, giving an analysis of the evolution of the PBL during the early evening 

transition. The SMARTSonde was also used to test various GPS based methods for 

retrievals of the PBL wind profile (Bonin et al. 2013b). Wind retrievals gathered by the 

UAV were compared to retrievals collected by a nearby SoDAR (Sonic Detection and 

Ranging) and radiosonde releases and found to compare well to the other platforms, 

sampling the wind speed to within 1.25 ms-1 and direction within 16˚ of those determined 
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from the radiosonde. Additionally, Wainwright et al. used UAVs to collect high-

frequency temperature observations within the boundary layer in order to develop 

methods for determining turbulent temperature fluctuations. The data collected by the 

UAV were found to adequately represent the boundary layer when compared to a co-

located SoDAR, further demonstrating the value of UAV as a research instrument.  

Further studies focused on using UAV in boundary layer measurements include 

the 2012 work of Dias et al. (2012) who adapted a small commercial UAV with a 

meteorological instruments package to take high resolution measurements of boundary 

layer virtual temperature and entrainment fluxes.  

Typically, UAVs fall into one of two categories. Larger aircraft over 10 kg are 

considered Category I UAVs and are typically designed for longer duration, higher flight 

missions. These craft can carry a wide array of sensors and normally need a runway for 

takeoff and landing. However, such aircraft can become expensive to operate and equip 

(Elston et al. 2015). One example of a Category I UAV is the Aerosonde research UAV, 

which is capable of flight up to 6 km with a flight duration of 40 hours (Dias et al. 2012). 

Smaller, Category II UAVs are under 10 kg in mass, carry lighter payloads, have lower 

operating altitudes, and remain airborne for under an hour. Similar to the SMARTSonde, 

Dias et al. used a fixed-wing Category II UAV that was able to take measurements up to 

1800 meters during a 15-minute flight. Despite their small size and limited flight 

capability, the relatively low price and ease of use make Category II aircraft popular 

among many research groups such as Dias et al. (2012), Bonin et al (2013a/b), and the 

CLOUD-MAP initiative (Elston et al. 2015).  
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Fixed-wing aircraft are not the only type of UAV that have been tested and used 

for PBL sampling and meteorological studies. Zhang, Dong, and Liu (2017) demonstrated 

how a six-rotor helicopter UAV, commonly known as a copter UAV, could be used for 

PBL measurements as an alternative to traditional towers, balloons, and radiosondes. One 

concern pertaining to copter UAVs is the impacts of rotor wash on instruments, especially 

pressure and temperature measurements. However, studies have quantified these errors 

and found them to be generally small (Guest, 2014) and can be mitigated by proper 

placement on the airframe. The work presented here focuses around these Category II 

copter UAVs. 

UAVs have served other roles in meteorological applications as well. Duthoit et 

al. 2017 demonstrated the ability of UAV technology to assist in radar maintenance. Here 

rotor UAVs were used to inspect radome surfaces and help perform calibration of an X-

band radar. The SMARTSonde developed at the ARRC has also been used to validate 

refractivity retrievals used by weather radars as described in Chilson et al. 2009. A review 

by Villa et al. (2016) validated the use of UAV for air quality studies, through several 

concerns were noted pertaining to future use of UAVs for such studies. These concerns 

included flight duration and payload capabilities as well as differing international 

regulations hindering the use of UAVs as a global research tool.  

In the United States, Federal Aviation Agency (FAA) regulations prohibit any non-

hobbyist UAV flights over 400 feet above ground level without a Certificate of 

Authorization (COA) as outlined in the FAA Memorandum AFS-400 [4] (FAA 2005) 

and recent rules for non-recreational UAV flight (FAA Small UAS Rule 14 CFR part 

107, 2016). While hobbyists are free to fly any UAV under this ceiling restriction, state 
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and federal agencies must acquire a COA by the FAA before UAV flights at any altitude 

can take place. This restriction typically encompasses university research groups and is a 

hinderance to UAV research as acquiring COA can be a lengthy process. However, one 

work around to this regulation is to tether the UAV, which allows research groups to 

legally fly UAVs above 400 feet (Walker and Miller 2013). However, using tethered 

UAVs may not be ideal is all research applications that employ UAV technology. Despite 

these regulations, many groups, such as CLOUD-MAP, see UAV as the future of PBL 

sampling and research. 

 

1.3 The University of Oklahoma CopterSonde and 3-D Mesonet 

The OU Center for Autonomous Sensing Systems (CASS) has begun work on a new 

UAV designed for intensive sampling of the PBL. Initially designed for flight and 

instrument testing during the National Severe Storms Laboratory (NSSL) Environmental 

Profile and Initiation of Convection (EPIC) field project in fall 2016 (Koch et al. 2017), 

this aircraft, designated the CopterSonde, is a “hashtag” shaped, eight-rotor Pixhawk 

copter UAV that can carry an array of meteorological instruments. Equipped with the 

ArduPilot (APM) software, the CopterSonde can fly in manual or autopilot mode. An 

integrated inertial measurement unit (IMU) and differential global positioning system 

(GPS) allow the CopterSonde to maintain a positional accuracy of 2-8 cm in flight. The 

CopterSonde is designed with operational safety in mind such that in the event of a single 

propeller or motor failure, the UAV will maintain safe and stable flight. Since the 

CopterSonde is designed for the purpose of PBL measurements it is able to operate in 

wind speeds up to 25 ms-1 (approximately 50 knots). This capability was tested during 
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EPIC when the CopterSonde “performed exceptionally well” during flights that 

experienced wind gusts over 20 ms-1 (approximately 40 knots) (Koch et al. 2017). 

However, variations of the CopterSonde frame and motor configurations are being 

considered and tested after experience and data collected during the EPIC campaign. 

The meteorological sensor package currently under testing on the CopterSonde is the 

Intermet Systems iMet-XF atmospheric sensor package. This instrument package is 

designed for rotary UAV platforms and contains a fast response bead thermistors for 

temperature and the IST hygrometer for relative humidity. The fast response thermistor 

has a 0.3 C precision and time constant of about 1 second. Both the thermistor and 

hygrometer have a sampling frequency of 5 – 10 Hz (Intermet Systems). 

The CopterSonde has become the leading UAV candidate as the instrumentation 

package for a concept of operations known as the 3-D Mesonet, an observing network 

concept that employs UAVs to sample in situ-observations of the PBL on a spatial scale 

similar to current mesoscale surface observing networks. While the CopterSonde UAV is 

the observing platform for the 3-D Mesonet, it is not the only required component. Work 

is underway at CASS to develop an automated recharging station for the UAV as well as 

a system for remotely inspecting the condition of the CopterSonde prior to flight. Since 

the UAV will be sharing airspace with regional air traffic, a small radar system is being 

designed that will detect nearby aircraft and notify the CopterSonde of the approaching 

air traffic. The UAV will then be able to terminate its observation flight prematurely with 

a rapid descent back to the recharging station. This ensures that the 3-D Mesonet will not 

interfere with the safety and operation of regional air space. As an additional safety 
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measure, 3-D Mesonet sites will not be co-located with airports of any size due to the low 

operating altitudes of aircraft on approach or takeoff.  

 

 

1.4 A Brief Review of Observation System Simulation Experiments 

Observing System Simulation Experiments (OSSEs) are a set of numerical 

experiments designed to gauge the potential impacts new observing systems have on 

numerical weather prediction. In an OSSE, one atmospheric numerical model is assumed 

to represent the actual behavior of the atmosphere. This modeled atmosphere, often 

referred to as the Nature atmosphere, or the Nature Run, is then sampled in such a way 

as to mimic a real or proposed observing systems, the data from which are then used to 

perform a series of experiments to determine the usefulness of the observing networks 

(AMS Glossary). The opening paragraphs of Masutani et al. (2010) describe the benefits 

of OSSEs, noting that by performing an OSSE for the then-proposed National Polar-

orbiting Environmental Satellite System (NPOESS) the instrumentation, modelling, and 

data assimilation communities will all be able to contribute to the design and 

specifications of the instrument package. This collaboration expedites the development 

process, mitigates long term costs, and maximizes the potential impact on numerical 

weather prediction. Despite the potential shortcomings of the OSSE methodology, such 

as the identical twin problem and misrepresented system capabilities and error 

assumptions (discussed later), the ability to experiment with simulated data from a 

proposed observing network prior to any instrument deployment is the true strength of an 

OSSE.  
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As described in Hoffman et al. (1990), OSSEs have three main components: 1) a 

long integrated, high resolution numerical model that represents the true atmosphere, 

often called the “Nature Run”. 2) A method for obtaining simulated observations for both 

operational observing systems and the proposed observing systems from the Nature Run. 

3) A series of analyses and forecast experiments to gauge the impact of the new observing 

system. In addition, many OSSEs incorporate a calibration step to ensure that the results 

are realistic. Typically, this calibration step involves performing an OSSE with an 

observing system that is already in place in order to compare the impacts of the real 

system with those of the simulated system. A second run is made using real instead of 

simulated observations; i.e., an observing system experiment (OSE). If the two impacts 

are similar, it provides confidence that the results from an OSSE will fairly estimate the 

actual benefit of the new observing system. Although somewhat similar in experimental 

design, the fundamental difference between OSSEs and OSEs is that OSE typically 

consist of data denial tests of observing systems that already exist and are fully 

operational. Additionally, OSEs compare their results to the real atmosphere while OSSE 

use the Nature Run atmosphere for measuring the impact of observations on the forecast 

accuracy.  

 The history of OSSEs begins in the mid-1950s when Newton (1954) discussed 

the potential benefits of performing numerical experiments with simulated data. It was 

thought that these experiments could highlight optimal locations for new instruments or 

observing networks, the required accuracy of those observations, and the best way to 

assimilate the observations to give the best results in an objective analysis. These ideas 

were expanded upon by Bristor (1958) who constructed a “perfect” geopotential height 
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field and added random perturbations to represent a measured atmosphere. From this data 

set Bristor then simulated various observation network configurations and compared the 

forecast results from the different simulated networks to the forecast from the “true” 

atmosphere. Bristor’s study was the first employ the OSSE methodology that has since 

been used in numerous studies. 

 In 1967 the Global Atmospheric Research Program (GARP) was initiated with 

one of the main objectives focusing on satellite data requirements for skillful NWP. This 

initiative prompted several OSSE efforts, including the work of Charney et al. (1969). 

The goal of Charney et al. was to demonstrate the value of analyzing temperature 

observations from the proposed Nimbus 3 satellite to yield other useful meteorological 

variables such as wind velocity. During this time, most of the observational data used by 

NWP came from rawinsonde data observed twice daily and surface data. This observing 

network left much of the mid and upper atmosphere relatively under sampled, especially 

if wind speeds were too high to accurately track weather balloons, and in the tropics where 

the number of surface and rawinsonde stations was sparse. The use of meteorological 

satellites was still in its infancy, and this work laid the foundation for further OSSEs to 

demonstrate the usefulness of proposed satellites for the next several decades. Following 

just a year later Halem and Jastrow (1970) used methods similar to Charney et al. to 

calculate the allowable root mean squared (RMS) observation errors for temperature, 

wind, and pressure in order to find the limits of predictability at various forecast times. 

Their findings revealed that the errors that were allowed under the GARP requirements 

for wind and pressure measurements would degrade an objective analysis despite having 
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higher quality temperature measurements. This finding was significant in that numerical 

modeling was able to identify a weakness in a proposed observing system.  

In the early days of OSSEs, including the work of Charney et al. (1969) and Halem 

and Jastrow (1970), the same model that was used to create the Nature Run was also used 

to create the OSSE forecast experiments. This type of experimental design was known as 

an “identical twin” OSSE (Atlas 1997). However, it was soon discovered by Williamson 

and Kasahara (1971) that due to the similarity in model errors between the Nature Run 

and the experiment forecasts that OSSE results were typically over-optimistic. Further 

limitations of identical twin OSSEs were identified by Jastrow and Halem (1973) who 

argued that even different model physical parameterizations were not sufficiently 

different when compared to the differences between real-world physical processes and 

model physics. Additionally, they found that incorrect assumptions about the capabilities 

of the observing system would yield optimistic results. Williamson (1973) went further 

to show that the only source of forecast error between the Nature Run and forecast 

experiments resulted from differences in the initial conditions of the two model runs in 

identical twin OSSEs.  

In order to avoid the identical twin problem Williamson and Kasahara (1971) 

suggested using a different model for the forecast experiments than is used to create the 

Nature Run. The model used for the forecast experiments is typically of lower resolution 

and employs different physical parameterizations than the nature run. This allows the 

model differences between the experiments and Nature Run to mirror the differences 

between a “state of the art” forecast model and the true atmosphere (Atlas 1997). These 

types of OSSEs are commonly referred to as “fraternal twin” OSSEs. 
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After the GARP experiment, the number of studies focused on OSSEs decreased 

until the 1980s when work was done by Cane et al. (1981) to find the impact on NWP of 

marine surface wind observations as simulated from a satellite. One notable finding from 

this study was the suggestion of allowing five days of model integration in an identical 

twin experiment in order for forecast statistics to be sufficiently different to be considered 

independent. However, since the authors performed an identical twin OSSE many 

following studies were skeptical of this result (Arnold and Dey 1986). 

 In 1983, prior to the launch of the Doppler wind LiDAR sounding system satellite 

program (WINDSAT), the National Meteorological Center (NMC), Goddard Laboratory 

for Atmospheric Sciences (GLAS), and the European Centre for Medium Range Weather 

Forecasts (ECMWF) collaborated to define guidelines for performing and interpreting 

OSSEs. Efforts were made to create a Nature Run that could be collaboratively used for 

WINDSAT related OSSEs. The ECMWF was chosen to create a single 20-day Nature 

Run, allowing the other agencies to run fraternal-twin simulations with their own models 

(Arnold and Dey 1986).  

Several notable papers resulted from this collaboration on the WINDSAT project, 

the first was Atlas et al. (1984), which was the first study to suggest the need for 

calibration of OSSE results with a corresponding OSE. Atlas et al. also reinforced the 

need for fraternal twin OSSEs in order to avoid unrealistically positive results. Along 

with testing model response times to various simulated observations, Halem and Dlouhy 

(1984) compared identical twin and fraternal twin experiments. They found that, contrary 

to previous studies, the identical and fraternal twin experiments gave similar results. 

However, the study is regarded as highly idealized bringing the validity of the study’s 
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results into question (Atlas et al. 1985, Arnold and Dey 1986). A more complete, 

fraternal-twin OSSE was conducted as a companion experiment to Halem and Dlouhy 

(1984) where wind fields from a space-based LiDAR were simulated with multiple 

realistic sources of error, including the effects of clouds and atmospheric aerosols on 

LiDAR observations (Halem and Dlouhy 1984).  

Studies on the WINDSAT project continued into the late 1980s. One such study 

is Hoffman et al. 1990 where investigators simulated the potential impacts of wind, 

temperature and moisture retrievals on global numerical prediction. The investigation 

revealed that while there was a net positive effect on global forecasts, the main impacts 

were found in the Southern Hemisphere where RMS error in the moisture field was 

decreased by 5% and the 500 hPa height forecast was improved by 12 hours. A calibration 

OSE was performed and verified that while the instrument would likely have little impact 

in the Northern Hemisphere, the positive results found in the Southern Hemisphere were 

realistic, giving high confidence to the findings.  

 By the early to mid-1990s OSSE work was focused primarily on the proposed 

Laser Atmospheric Wind Sounder (LAWS) and the NASA Scatterometer (NSCAT). For 

these OSSEs a more accurate Nature Run with higher resolution was developed by 

ECMWF (Atlas 1997). Rohaly and Krishnamurti (1993) investigated the impacts of 

assimilating simulated LAWS observations from two different orbital inclinations. As 

might be expected, they found that the orbit with the higher inclination were able to 

resolve features in the polar regions while the lower inclined orbit accurately resolved the 

tropics. Besides these differences the overall impacts of the LAWS observations were 

similar for both orbits. Woods et al. (1991) and Emmitt and Woods (1991) simulated 
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LAWS observations to demonstrate the potential impacts of cirrus clouds, water vapor, 

and other aerosols on wind vector estimates and forecasts. Hoffman (1993) performed 

experiments with NASA’s ERS-1 Scatterometer and found that the simulated 

observations had little to no impact on forecasts in the Northern Hemisphere, and only 

slightly positive impacts on the Southern Hemisphere.  

 Although work on global satellite OSSEs continued into the early 2000s (Lord et 

al. 2001), a number of OSSEs focusing on mesoscale observing networks and 

assimilation techniques emerged. One such study is Tong and Xue 2004 where a new 

Ensemble Kalman Filter (EnKF) data assimilation method is employed to assimilate radar 

observations into storm scale atmospheric simulations. More specifically, the study 

sought to observe the impacts on the analysis of a supercell storm by assimilating different 

classes of microphysical variables as well as the effects of incorporating reflectivity and 

radial velocity. It was found that the EnKF radar assimilation method performed well to 

recreate the model supercell storm after a number of assimilation cycles. While no 

extended forecasts were made, nor any calibration performed, this study laid the 

foundation for future radar OSSEs.   

Similar methods to Tong and Xue 2004 were employed in Xue et al. 2005, which 

focused on the impacts of assimilating CASA (Center for Collaborative Adaptive Sensing 

of the Atmosphere) radar observations of supercells into regional numerical models. The 

smaller X-band CASA radars were tested as gap filling radars to sense the lower 

atmosphere and lowest portions of severe storms - regions that are not well covered by 

the operational WSR-88D network. Emphasis was placed on using a new Ensemble 

Square Root Kalman Filter (EnSRF) radar assimilation method to realistically simulate 
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and assimilate data from the smaller, faster CASA radars. It was found that the CASA 

radars did add noticeable value to the analysis in the lowest levels of the atmosphere, and 

the improvements to the analysis increased as more simulated CASA radars were 

assimilated. Although this study paid great detail to incorporating realistic errors in the 

data assimilation stage, no calibration step was performed. This was likely due to the 

limited number of observational networks that the proposed CASA network could be 

compared against.  

The use of OSSEs for testing new data assimilation methods continued with the 

work of Wang et al. 2008 and Liu et al. 2009 who used the WRF-ARW model to perform 

data assimilation tests with hybrid ETKF-3DVAR and En4DVAR schemes 

respectively.  While satellite and global NWP OSSE work was still carried out into the 

2010s (Masutani et al. 2010, Atlas et al. 2015, Jones et al. 2013, Bruscantini et al. 2012), 

more studies emerged focusing on surface-based observing systems (Yussouf and 

Stensrud 2010, Gasperoni et al. 2012, Hartung et al. 2011). This period of OSSE work 

not only demonstrates the versatility of OSSEs, but also marks the transition from larger, 

planetary observing systems on large spatio-temporal scales to testing a variety of smaller 

observing systems and data handling methods on smaller spatio-temporal scales. These 

smaller, shorter OSSEs are now commonly referred to as “quick OSSEs”.  

Quick OSSEs were mentioned by Atlas et al. 2015 as a valid method for testing 

impacts of observations systems on modeling smaller scale events such as hurricanes. 

These quick OSSEs are typically performed over a ten-day period and have Nature Runs 

that were created by regional models embedded within global Nature Runs. This more 

rigorous Nature Run suggestion allows for the discernment between the impacts of 
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regional vs. global data assimilation procedures (Zhang et al. 2010). Although this 

suggestion is followed by many OSSE studies (Nolan 2013, Miller et al. 2008), it is not 

a requirement for a complete OSSE. Some studies have created their own Nature Runs 

with lone regional models, such as Aksoy et al. 2012 and Leidner et al. 2016. 

In the Leidner et al. study, observations from Global Navigation Satellite System 

(GNSS) Radio Occultations (ROs) are simulated for a quick OSSE (Atlas 2015) for the 

May 31, 2013 severe weather event. This study is unique in that it combines simulated 

satellite observations with smaller spatial and temporal scales. The inner domains covered 

by both the Nature Run and the experiment forecasts were both on the mesoscale and 

were run for only a 30-hour forecast in order to capture the entirety of the severe weather 

event. Although the authors acknowledged the weaknesses in their experimental design, 

such as using the WRF for both the Nature Run and forecast experiments, this study of a 

single severe weather event is still substantiated as a valid application of the quick OSSE 

methodology.  

Another relevant quick OSSE is Zack et al. (2011). In this study a quick OSSE is 

conducted to find the optimal configuration of meteorological towers and SoDAR 

instruments in the Mid-Columbia River Valley that provide the most accurate wind 

forecasts for wind energy purposes. Zack et al. performed a fraternal-twin OSSE, 

employing the Advanced Regional Prediction System (ARPS) (Xue et al. 2000, Xue et 

al. 2001) to produce a high resolution (1 km) 9-day long Nature Run and using the WRF-

ARW to produce the experiments. In order to simulate the high-resolution SoDAR 

observations, wind speed data were vertically interpolated every 10 meters from 30-200 

meters above ground level (AGL). Meteorological tower, radiosonde, and surface 



17 

 

observation networks were also simulated in a similar manner based on errors associated 

with each observation type. In order to help decrease the similarities between the nature 

run and the experiments, all experiments were initialized at an earlier time than the Nature 

Run. This allowed for model error to grow enough that once the Nature run and 

experiment forecast were valid at the same time there were substantial differences 

between the two. By doing this, the impact of the simulated observations became more 

apparent and easier to quantify. Through this OSSE configuration Zack et al. were able 

to identify the optimal placement for their instruments and saw forecast improvements up 

to five hours from the initial time during the warm season. 

Despite the benefits that can be gained from OSSEs, critics often point out 

weaknesses of OSSEs that must be taken into consideration during the experimental 

design. These criticisms are often centered on the identical twin problem as discussed 

previously. Hoffman et al. (1990), Atlas (1997), Arnold and Dey (1986), and Masutani et 

al. (2008) all stress the importance performing fraternal twin OSSEs. By making 

appropriate and sufficiently different model selections to be used as the nature run and 

experiment model, problems associated with similarities between model errors can be 

easily mitigated, thus eliminating one of the leading causes for overly optimistic OSSE 

results. Another common critique is that the precise error characteristics and capabilities 

of the instruments may not be explicitly known or appropriately modeled in the OSSE 

(Arnold and Dey, 1986). On a similar note, Atlas et al. 1985 points out that OSSE results 

can often be model dependent and the assignment of random errors is often incorrect. 

Additionally, Hoffman et al. 1990 points out that one of the biggest shortcomings of 

OSSEs is the assumption of uncorrelated errors. These incorrect error assumptions can 
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lead to overly optimistic results and make interpretation of results difficult (Hoffman et 

al. 1990). Finally, it is often noted that it is difficult to create a comprehensive set of 

simulated observations for all current observing networks in use today, making it difficult 

to precisely gauge the current state of operational NWP capabilities. Furthermore, OSSEs 

are only able to simulate the total observing systems in use today but are not able to 

account for all possible future observing systems that will be operational by the time the 

tested network is deployed. 

Regardless of this caveat, both full OSSEs and quick OSSEs are still used today 

to study and develop the next generation of observing platforms. After more than fifty 

years of refinement the OSSE methodology remains a powerful tool to demonstrate the 

potential of new instrumentation and data assimilation methods. Although critics of 

OSSEs may point out the shortcomings of the process, such as the identical twin problem, 

inappropriate system capability assumptions, and inaccurate system error specifications, 

there remains no better way to test the value of an observing platform prior to expensive 

deployments.  
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Chapter 2 

 

2.1 Numerical Modeling 

2.1.1 Advanced Regional Prediction System (ARPS) 

One of the key components to a successful OSSE is the creation of a Nature Run 

that is representative of the real atmosphere. In this study the Advanced Regional 

Prediction System (ARPS) was chosen to create the Nature Run. ARPS is a fully 

compressible, non-hydrostatic model developed by the Center for Analysis and Prediction 

of Storms (CAPS). The model uses a terrain-following vertical coordinate, a second-

order-leap-frog scheme, and a user-selectable stretching option for the vertical spacing. 

Although it is scalable to meso and synoptic scales, the ARPS model was developed for 

modeling convection on storm scales (Xue et al. 2001a, 2001b). The ARPS model has 

been used to simulate a variety of meteorological phenomena such as tropical storms 

(Zhao and Xue 2009) and convective squall lines (Dawson et al. 2009) and has also seen 

been employed to create the nature run for mesoscale OSSEs (Zach et al. 2011, Gasperoni 

2013).  This study uses Version 5.4.2 of ARPS.  

2.1.2 ARPS 3-Dimensional Variational System (ARPS 3DVAR) 

 The ARPS 3DVAR system is one of two data analysis programs that were 

developed specifically with the ARPS model by Gao et al. (2004). As with all 3DVAR 

techniques, the ARPS 3DVAR seeks to minimize a cost function J(x) defined by: 

𝐽(𝑥) =  
1

2
(𝑥 −  𝑥𝑏)𝑇𝑩−1(𝑥 − 𝑥𝑏) +  

1

2
[𝐻(𝑥) − 𝑦𝑜]𝑇𝑹−1[𝐻(𝑥) − 𝑦𝑜] + 𝐽𝑐 
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The first term is the background constraint term and represents the difference between 

the state (x) and background (xb) vectors weighted by the inverse of the background error 

covariance matrix (B). The second term represents the adjustment from the observed 

value (yo) and the state vector projected to the observation space by the forward operator 

(H(x)), and weighted by the inverse of the observation error covariance matrix, R. The 

third term, Jc, is a mass continuity constraint term.  

The specifications of B and R are important to the 3DVAR process, and in this 

study, R is assumed to be a diagonal matrix under the assumption that all observation 

errors are uncorrelated. The specification of the background matrix B involves using a 

recursive filter to create Gaussian and isotropic spatial correlations. Different 

decorrelation length scales can be applied to multiple passes of the filter such that B can 

change for different observation types. However, the background error matrix does not 

account for cross-correlations between different variable types.  

In this study, the Incremental Analysis Updating (IAU) scheme (Bloom et al. 

1996) is used in conjunction with ARPS 3DVAR. The IAU scheme takes the analysis 

increments from the background field created in the analysis step and inserts them into 

the ARPS model as a forcing term over a user specified time window. The increments are 

applied according to the equation: 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹(𝑋) + ∝𝐼𝐴𝑈 (𝑋𝑎 −  𝑋𝑏) 

Where X represents the model variable, F represents the model forcing term, and ∝𝐼𝐴𝑈 is 

the IAU weighting coefficient acting on the analysis increment (Xa – Xb). These 

increments are applied to the model field as specified by the user at discrete time intervals. 
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A triangular shape is used in this study such that the maximum of the increment is applied 

in the middle of the time window. In this way the increments match the observation time 

more closely while gradually transitioning to a free forecast to reduce noise after the 

assimilation time window. Studies show that using IAU can help reduce noise in model 

fields immediately following data assimilation and has been shown to improve strength 

and maintenance of convective storms (Brewster 2003, Brewster 2015).  

 2.1.3 ARPS Data Assimilation System (ADAS) 

 The second data analysis package within ARPS is the ARPS Data Assimilation 

System (ADAS). Unlike ARPS 3DVAR, ADAS employs the Bratseth successive 

correction scheme (Bratseth 1986) that iteratively analyzes measurements of wind 

velocity, pressure, potential temperature, and specific humidity from a wide variety of 

sources. At the end of the iterations the solution converges to that of Optimal 

Interpolation. ADAS’s ability to easily incorporate observations from numerous and often 

disparate instrument platforms (such as surface observing networks, soundings, aircraft 

measurements, profilers, radar, and satellites) makes it a valuable data assimilation 

system that has seen use in several research applications (Brewster, 2003b, Watson, 

2010).  

 In ADAS several passes of the successive correction are performed, each with a 

different correlation scale length such that widely-spaced observations can be applied 

first to correct for synoptic scale errors before including higher density observations such 

as radar reflectivity and velocity. The scheme can be described by the equations: 

𝑠𝑥(𝑛) =  𝑠𝑥(𝑛 − 1) + ∑ ∝𝑥𝑗 [𝑠𝑗
𝑜 − 𝑠𝑗(𝑛 − 1)]

𝑛𝑜𝑏𝑠

𝑗−1
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𝑠𝑖(𝑛) =  𝑠𝑖(𝑛 − 1) + ∑ ∝𝑖𝑗 [𝑠𝑗
𝑜 − 𝑠𝑗(𝑛 − 1)]

𝑛𝑜𝑏𝑠

𝑗−1

 

 

Where the variable (s) at the grid point (x) and observation point (i) is analyzed using the 

observations (sj
o) weighted by the weighting factors (∝𝑥𝑗, ∝𝑖𝑗) during the nth iteration. 

Background and observation error variance are incorporated into the weighting factor by 

the equation: 

∝𝑖𝑗=  
(𝜌𝑖𝑗 + 𝜎𝑛

2𝛿𝑖𝑗)

𝑚𝑗
  

 

Here 𝜎𝑛
2 is the ratio of the observation and background error variance and 𝛿𝑖𝑗 is the 

Kronecker delta tensor, and 𝜌𝑖𝑗 represents spatial correlations. These spatial correlations 

contained in 𝜌𝑖𝑗 are assumed to be Gaussian and are weighted by the horizontal and 

vertical separation between the grid point and observation point.  

 A unique aspect of ADAS is the Complex Cloud Analysis, a module within 

ADAS that employs surface, radar, and satellite observations to estimate moisture and 

hydrometeor fields as well as apply temperature increments to account for latent heating 

(Zhang et al. 1998, Brewster 2002). Additionally, ADAS (and ARPS 3DVAR) have a 

quality control module that automatically rejects any observation that is over a set error 

threshold when compared to neighboring observations. This threshold is dependent on 

observation type and is determined by the specified observation error variance and a 
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quality multiplier for each source.  As with ARPS 3DVAR, ADAS increments can be 

assimilated in the model using the IAU scheme.  

 With the use of the additional software packages, wrf2arps and arps4wrf, ADAS 

can act as the data assimilation program for initializing forecast runs of the Weather 

Research and Forecasting (WRF) model, as described in Watson (2010) and Case et a. 

(2006). ADAS will be used in this study to assimilate synthetic observations and perform 

data assimilation cycling for the WRF experimental forecasts and will be discussed in 

section 2.1.5.    

2.1.4 Weather Research and Forecasting (WRF) Model 

 The WRF model was developed by NCAR as community mesoscale model that 

could fill both research and operational numerical modeling roles. As a multipurpose 

model, including use in many OSSEs (e.g., Jones et al. 2013, Zach et al. 2011, Liu et al. 

2009), the WRF provides a common building block that allows easy transition from the 

research to operational applications. The WRF model is fully compressible and has two 

dynamical cores, the Advanced Research WRF (ARW) maintained by the National 

Center for Atmospheric Research (NCAR), and the Nonhydrostatic Mesoscale Model 

(NMM) used by the National Center for Environmental Prediction (NCEP). In the WRF-

ARW (Version 3.8) used here, a staggered Arkawa C-grid is employed along with a user-

selectable vertical grid.  Positive-definite advection options for moisture and turbulent 

kinetic energy are available and use 2nd to 6th order horizontal and vertical advection 

options with Runge-Kutta 2nd or 3rd order timesteps. Grid nesting is available but is not 

used in this study. In a typical WRF simulation or forecast, the WRF Preprocessing 

System (WPS) unpacks the Gridded Binary (GRIB) data from an external model, creates 
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the WRF grid, and creates the initial and boundary condition files that WRF requires for 

a full model integration. While WPS is used to create the WRF control run (see section 

3.5), the creation of initial and boundary condition files can be performed instead by the 

arps4wrf program, as is done with the WRF experiment forecasts (outlined in section 

2.1.5).  

2.1.5 WRF Data Assimilation Cycling 

 Following the examples of Watson (2010) and Case et al. (2006), the ADAS 

program is used for data assimilation cycling of the WRF OSSE forecasts. This procedure 

begins by using the 12Z WRF output file from the WRF Control Run (to be described in 

section 3.5) as the initial background file. Since the ADAS program works in the ARPS 

framework the WRF background file must be converted to an ARPS format.  This is done 

by processing the WRF background file through the ARPS program wrf2arps to convert 

the WRF gridded data into an ARPS format grid of the same dimensions. Synthetic 

observations extracted from the ARPS Nature Run are then assimilated with ADAS on 

the ARPS grid. The resultant analysis is then converted back into a WRF-usable format 

through the program arps4wrf. During this conversion the exact WRF model vertical 

levels are given as output by the program arps4wrf, allowing for consistent vertical grid 

dimensions between the conversion steps.  

 Six passes of the Bratseth successive correction scheme are applied during the 

ADAS step to incorporate the simulated observations into the background fields. 

Correlation length scales were chosen based on the experimental ADAS configuration 

used for high resolution convective forecasting. An initially large spatial correlation 

length scale is used for the first two passes with decreasing correlation length scales for 
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each successive pass (Table 2.1). Additionally, the background error file is updated every 

two hours during the 6-hour DA cycle. Background error values for pressure, relative 

humidity, temperature, and U and V wind components were reduced to account for the 

increasing confidence a high-resolution model gains through the DA cycle. Initial 

background error values from the Rapid Update Cycle (RUC) 3-hour forecast error were 

used and reduced by 66% during each update. Additional fine tuning of the second and 

third background error files was incorporated to give realistic results for the WRF 

experiment that incorporated the simulated observations from current observing networks 

only, ensuring that this experiment compared well to current operational NWP 

performance. These background error files and correlation length scales are held constant 

for all experiments. 

 Lateral boundary conditions provided by the GFS (see section 3.5) are also 

processed through these conversion steps to allow for the same number of vertical levels 

in the boundary condition files as in the initial condition files. Once the initial boundary 

condition and lateral boundary condition files are created, a 1-h WRF forecast is 

produced. The output from this 1-h forecast is used as the background file for the next 

data assimilation step. This procedure is repeated for the duration of the data assimilation 

cycling period.  
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Pass Number Correlation Length Scale (km) 

1 200 

2 150 

3 120 

4 80 

5 65 

6 50 

 

2.2 Simulated Observations 

One key aspect of OSSEs is the generation of synthetic observation data from 

both current and proposed observation networks. Whether the observations are in-situ or 

collected via remote sensing, proper creation of synthetic observations includes realistic 

spatio-temporal frequency of observations as well as accurate error characteristics. In this 

OSSE both the current operational observing suite (i.e., all the observations used to 

initialize the GFS), and the proposed 3-D Mesonet network are simulated. Incorporating 

the complete operational observing networks ensures that OSSE results will not be overly 

optimistic and give a representative measure of the impacts the 3-D Mesonet observations 

could have on operational NWP.  

2.2.1 Simulating Real Observing Networks 

In most traditional OSSEs, such as Atlas 2015, all current observing systems (such 

as satellites, radars, LiDARs, surface, and upper air observations) are individually 

Table 2.1: Correlation Length Scales used during the ADAS procedure. 
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simulated. These are highly detailed simulated observations complete with appropriate 

instrument errors characteristics. However, creating the necessary hundreds of millions 

of such observations from all observing networks, especially satellite and radar networks, 

is highly time intensive. To expedite this OSSE experiment, not all observing systems are 

explicitly simulated. Instead, Final Analyses from the Global Forecast System (GFS 

FNL) are simulated and used as a proxy for implicitly simulating all observing networks. 

At the National Center for Environmental Prediction (NCEP) the GFS is run every 

six hours, and global observations used in the GFS are collected up to one hour after the 

model start time. For example, data for the 12 UTC initialization of the GFS will include 

observations up to 13 UTC. Although the GFS forecast is begun earlier to meet time-

critical forecast needs, the late observations are still used in the Global Data Assimilation 

System (GDAS), which is also used by the GFS. These additional observations are 

assimilated into a GFS FNL analysis that is used as the initial background field at the 

beginning of the data assimilation cycle for the next GFS run. Typically, FNL analyses 

contain ten percent more observations than the GFS analyses used to initialize each run 

of the GFS (Peng 2014). These FNL analyses represent the accumulation of all global 

observing networks and are assimilated into the GFS as a gridded 1-degree-by-1-degree 

network of data at the surface and 26 pressure surfaces in the vertical from 1000 hPa to 

10 hPa (NCEP 2000).  

Psuedo-observations, hereafter FNL obs, representing the FNL analyses are 

extracted from the ARPS Nature Run data and are assimilated into the WRF experiments 

as a network of soundings on a 1-degree-by-1-degree grid with temperature, dewpoint, 

pressure, geopotential height, wind speed and wind direction available at the surface and 
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twenty-six pressure levels. FNL obs from the Nature Run are created using linear 

interpolation on a logarithmic pressure scale to the twenty-six pressure levels and the 

surface level. Since the ARPS Nature Run only extends to 50 hPa, linear extrapolation on 

a logarithmic pressure scale is used to find data on the 10 hPa pressure surface. One 

notable difference is that while the real GFS FNL analyses are assimilated every six hours 

into the operational GFS, here they are assimilated every three hours in order to account 

for the more frequent data assimilation cycles used by mesoscale models. Errors for each 

variable of the FNL obs were randomly sampled by a non-biased Gaussian distribution. 

These distributions were characterized by standard deviations that were determined by 

the average RMS error of the operational GFS for the 0-24 hour forecast period during 

the month of May 2017 (provided by the Earth System Research Laboratory (ESRL)). 

Since the average RMS error from the GFS varied with height, the standard deviations, 

and hence the Guassian error distributions, varied with height for each variable. 

Additionally, the standard deviations for the error distributions were increased slightly 

for pressure levels greater than 850 hPa to replicate decreased observational accuracy 

within the PBL. These standard deviation values used for the FNL observations are given 

in Table 2.2.   

Although the GFS FNL analyses are intended to act as a proxy for most current 

observing networks, one exception is the surface data from the Oklahoma Mesonet 

(Brock et al. 1995). This was done in order to allow a comparison of the impacts of large 

scale observations (GFS final analysis soundings) versus mesoscale observations and to 

act as a rough calibration of a current observation system on the OSSE. Mesonet 

observations were simulated by extracting 1.5-m temperature and dewpoint, 2-m wind 
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speed, surface pressure, 10-m wind speed and direction, and 9-meter air temperature from 

the Nature Run.  

For the Oklahoma Mesonet, errors for each observation type were found by 

randomly sampling from a Gaussian distribution with each instruments’ accuracy set as 

the standard deviation of the distribution. When appropriate, the instrument accuracy, and 

thus the Gaussian distribution, varied based upon other environmental factors. For 

example, the thermistor used for nine-meter air temperature is non-aspirated and therefore 

the instrument accuracy is sensitive to changes in wind speed. This sensitivity is reflected 

in the generation of simulated errors by using ten-meter wind speed as a proxy for nine-

meter wind speed and adjusting the accuracy of the thermistor as necessary (Oklahoma 

Mesonet, McPherson et al. 2006).  
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Variable Standard Deviation Value 
Variable 

Dependencies 

GFS FNL 

U & V wind (m/s)  Press (hPa) 

 4.5 < 100 

 4.5 199 – 100 

 4.0 399 – 200  

 3.25 699 – 400 

 3.0 850 – 700 

 4.0 > 850 

Temp (C)   

 1.5 < 100 

 1.75 199 – 100 

 1.5 399 – 200 

 1.0 699 – 400 

 1.25 950 – 700 

 5.5 > 950 

RH (%)   

 14.0 < 100 

 20.0 299 – 100 

 14.0 799 – 300  

 13.5 950 – 600  

 15.0 > 950 

Geopotential Height (m)   

 55.0 < 200 

 35.0 299 – 200 

 25.0 499 – 300 

 23.0 699 – 500 

 17.0 950 – 700 

 20.0 > 950 

Mesonet 

1.5 m Temp (C)  -  

 0.5  

9 m Temp (C)  Wind Speed (m/s) 

 0.5 >= 6.0 

 1.0 3.0 – 5.9 

 1.5 2.0 – 2.9 

 3.0 0.0 – 1.9 

1.5 m RH (%)  RH (%) 

 2.0 <= 90 

 3.0 > 90 

Table 2.2: Standard deviation values for Gaussian error distributions for each 

observation type. 
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2.2.2 Simulating UAV Observations 

For the proposed UAV system, observations were extracted in a manner similar 

to the processing for the GFS final analysis soundings with a few additional steps. For 

simplicity, each 3-D Mesonet UAV site was assumed to be co-located with an Oklahoma 

Mesonet site. Oklahoma Mesonet sites that were near or co-located with an airport were 

excluded from being eligible 3-D Mesonet sites. All eligible 3-D Mesonet locations are 

shown in Figure 2.1. The flight path of each UAV is assumed to follow a vertical ascent 

and descent, a realistic assumption considering most copter UAV’s, including the OU 

CopterSonde, have the ability to adjust for wind speed and direction to maintain a set 

flight plan. Observations were simulated for the ascent portion of the flight only. This 

was done to represent the idea that once a UAV has completed its observation gathering 

Wind Speed (m/s)  -  

 0.3  

Wind Direction (degrees)  - 

 3.0  

Pressure (hPa)  -  

 0.4  

UAV (CoperSonde) 

Temp (C)  Press (hPa) 

 0.2 > 100  

 0.3 <= 100 

RH (%)  - 

 5.0%  

Wind Speed  Press (hPa) 

 0.5 > 100 

 1.0 <= 100 

Wind Direction (degrees)  - 

 5.0  

Pressure (hPa)  - 

 1.0  
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ascent it can make a much quicker descent back to the landing site to conserve battery 

life. The vertical ascent of the CopterSonde is designed to be a constant 3 ms-1 with height, 

pressure, temperature, humidity, wind speed and wind direction measurements taken 

every ten meters. By this standard, a routine flight to 400 feet (or nearly 122 meters) 

would take roughly twelve measurements in just over forty seconds and a flight to 3 km 

AGL would take just under 17 minutes to collect 300 measurements. 

 

 

   

 

 

 

Extracting the UAV observations from the Nature Run begins by finding the 

ARPS Nature Run grid point closest to the 3-D Mesonet location. Since the Nature Run 

has a high 1 km resolution, the maximum theoretical distance between a grid point and 

3-D Mesonet site is roughly 0.71 km. However, it was found that the average grid-to-

observation point distance was only 0.32 km with a maximum distance of around 0.45 

km and a minimum distance less than 0.1 km. This average distance is short enough to 

be considered representative of the 3-D Mesonet location and yet can account for 

representativeness error in the extracted observations. ARPS Nature Run data is collected 

at the determined grid point from every vertical level. A simulated UAS vertical profile 

Figure 2.1: 110 3-D Mesonet simulated observation sites. 
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up to 3km AGL was then created by performing vertical linear and Lagrangian 

interpolation on a logarithmic pressure scale for the first and subsequent CopterSonde 

observation levels respectively. The vertical interpolation schemes are similar to those 

outlined by Shen et al. (1985). Since the Nature Run atmospheric data are available in 

five-minute increments, the simulated CopterSonde data are time adaptive; after every 

five minutes of simulated flight time a new Nature Run file is used for sampling. This is 

done to replicate changing atmospheric conditions while the CopterSonde is in flight, 

particularly for simulated flights longer than five minutes (or in other words, flights up to 

900 m or greater).  

Additionally, UAV observations are constricted by cloud cover. In order to 

comply with FAA visual flight rules (FAA 2005, 2016) if the CopterSonde encounters a 

region of high humidity (96% or greater) or a combined value of cloud water vapor and 

cloud ice mixing ratio greater than 10-6 kg/kg (Arbizu-Barrena et al. 2015) then it is 

assumed a cloud layer has been detected and the observation flight is ended. One aspect 

of the 3-D Mesonet that is not modeled in this study is the capability of the CopterSonde 

to avoid air traffic. Although a system is being designed by CASS and the Advanced 

Radar Research Center (ARRC) to end CopterSonde flights with the approach of a 

commercial or private aircraft, the amount and average altitude of air traffic over each 

Oklahoma Mesonet site is relatively unknown and presumed to be sparse.  

Instrument errors are modeled after the RS92 NGP Viasala radiosonde package 

since the instrument error goals of the CopterSonde are designed to mirror this instrument 

package. Error values are assumed to be unbiased and follow a Gaussian distribution with 

the Vaisala instrument error range set as the standard deviation of the distribution (Vaisala 
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2013). As with the simulated FNL and Oklahoma Mesonet errors, simulated CopterSonde 

errors take into account changes in instrument behavior based on environmental 

conditions such as extreme temperatures, wind speed, and altitude. However, these errors 

do not account for instrument drift after prolonged and repeated use, a known problem 

with radiosonde hygrometers that the developers of the CopterSonde are seeking to 

mitigate. Errors are added to each interpolated Nature Run data point through random 

sampling of the distribution. As mentioned, additional unknown representativeness errors 

are introduced due to the nearest-neighbor grid point selection method. But these errors 

are considered to be small compared to the instrumentation errors added intentionally to 

the simulated observations.   
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Chapter 3 

3.1 Case Study Selection 

 Similar to the NSSL EPIC campaign in fall 2016 (Koch et al. 2017), one of the 

primary foci of the 3-D Mesonet concept is to help improve current numerical forecasting 

of severe convection, especially convective initiation. Because of this goal, case selection 

was limited to convective events with clear initiation of discrete convective storms. 

Additionally, selection was limited to daytime events to allow for sampling of the 

evolving daytime PBL prior to initiation. Events with weak synoptic forcing, such as 

initiation off a dryline, were preferred as prediction of these events may be more sensitive 

to differences in observational coverage. Based on these criteria, the severe weather event 

that occurred on 20 May 2013 was selected, as discrete convection occurred along a 

dryline during the early afternoon hours in central Oklahoma.  

3.2 Event Overview and Synoptic Setup 

May 20th, 2013 is perhaps best known for the violent EF-5 tornado that struck 

Moore, Oklahoma. However, the severe weather outbreak on this day was widespread, 

resulting in over 400 severe weather reports, 37 of which were tornadoes (Figure 3.1). 

For the purposes of this study, attention will be focused on the convective events that 

unfolded across central Oklahoma.  The severe weather that occurred on the 20th followed 

the severe events that occurred on May 19th across the Southern Plains in a two-day 

severe weather outbreak. This outbreak was associated with a strong, but slow moving 

mid-level longwave trough moving across the western United States. By 12 UTC on 20 

May the mid-level wave had begun to deepen and slowly move northeastward across the 

Central Plains.  This placed much of Oklahoma under a southwesterly 22-25 ms-1 (45-50 
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kt) flow aloft. The surface low associated with the upper level trough can be seen in 12 

UTC surface observations in southeastern South Dakota, vertically stacked underneath 

the upper level low. A weak, stationary surface frontal boundary was draped southward 

from the surface low through Iowa, eastern Kansas, and down the Interstate 35 corridor 

in central Oklahoma (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: All severe weather reports from 20 May 2013 (SPC). 
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While this boundary would become the focus for convection later in the day, a 

few additional features should be noted in the 12 UTC surface observations. The most 

notable is the weak surface low present over western Oklahoma. Just to the east-northeast 

of this low is a weak warm frontal boundary separating warm, southerly return flow with 

temperatures in the 20-25 C (70 to 75 F) range from cooler air to the north. During the 

morning hours a few elevated thunderstorms occurred along this boundary but were 

quickly advected to the northeast into a less favorable environment. A 17 ms-1 (35 kt) 

southwesterly 925 hPa wind was overriding the warm sector across eastern Oklahoma, 

allowing for a strong meridional flux of low level moisture. A distinct dryline was present 

to the south-southwest of the surface low with a more diffuse dewpoint gradient present 

Figure 3.2: Surface objective analysis chart valid at 12 UTC 20 May 2013 (SPC). 
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to the west of the low. These features are all illustrated in the composite analysis in Figure 

3.2.  

The 12 UTC upper air sounding released from Norman, Oklahoma (OUN) (Figure 

3.3a) revealed a thermal profile with a deep elevated mixed layer extending from 850 hPa 

to 500 hPa. This layer of nearly dry-adiabatic lapse rates helped support over 2300 J/kg 

of mixed layer Convective Available Potential Energy (CAPE), which was held-back by 

a capping inversion with -199 J/kg of Convective Inhibition (CIN). Additionally, the 

environmental winds were supportive of severe organized convection with surface to 6-

km bulk wind shear of 50 knots and surface to 1-km Storm Relative Helicity (SRH) of 

308 m2s-2. 

 

 

 

 

 

 

 

 

 

 

By 18 UTC vertical mixing of strong low-level winds strengthened the surface 

wind field and allowed for steeper low-level lapse rates as observed by a special 17 UTC 

upper air sounding from Norman, Oklahoma (OUN) (Figure 3.3b). Surface observations 

Figure 3.3: Observed soundings from OUN at 12 UTC (A) and 17 UTC (B). 

A B 
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from this time show a dryline bulge across southern Oklahoma to the southwest of 

Norman, OK (Figure 3.4). This dryline bulge would act as the forcing mechanism to 

initiate convection across southern Oklahoma, including the supercell that would 

eventually spawn the Moore tornado. Further to the north in north central Oklahoma and 

southeastern Kansas, convective initiation commenced along the stationary boundary 

shortly after the onset of convection to the south. During the first few hours of the event, 

the mean cloud layer flow orthogonal to the dryline and stationary boundary allowed for 

storms to remain discrete. However, by 00 UTC cells began to congeal into a broken line. 

This line of storms continued to produce severe weather as it propagated into 

northwestern Arkansas and southwestern Missouri. By 06 UTC the initial round of 

convection had propagated well into Arkansas and Missouri with only elevated 

convection lingering across central and eastern Oklahoma.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4: Observed surface dewpoints (fill, deg F) and 10 m wind vectors (barbs, knots) 

from the Oklahoma Mesonet valid at 17 UTC 20 May 2013.  
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3.3 ARPS Nature Run 

 The Nature Run for this study was created using the ARPS model over a 900 by 

900 km domain centered over the state of Oklahoma with a 1 km horizontal resolution. 

The 61 vertical levels were determined by the cubic vertical stretching function within 

the ARPS program (Xue et al. 2000a) with the lowest vertical spacing being 20 m (first 

level at 10 m AGL) and the model top at a height of 20.5 km AGL (around 50 hPa) (Figure 

3.5a). Parameterization schemes included a two-moment bulk microphysics 

parameterization with a fixed spectral shape parameter (Milbrandt and Yau 2005a, 

2005b), a staggered atmospheric radiation transfer parameterization scheme, built off the 

work of Chou (1990,1992) and Chou and Suarez (1994) (Xue et al. 2000b). Surface fluxes 

were calculated from stability-dependent surface drag coefficients, surface temperature 

and water content, and the boundary layer parameterization was the 1.5 turbulent kinetic 

energy mixing scheme developed by Moeng (1984). Since the horizontal grid length is 1 

km, this classifies as a convection resolving model, therefore no cumulus parametrization 

was employed.  

 Initial condition and lateral boundary condition inputs for the Nature Run were 

supplied by the operational North American Model (NAM) beginning at 06 UTC on May 

20th. Surface observations from the Oklahoma Mesonet, as well as METAR locations, 

upper air, infrared satellite, and regional radar observations were assimilated into ARPS 

every two hours between 06UTC and 12UTC using ARPS 3DVAR increments applied 

by the IAU-VDT scheme. At 12UTC a free forecast was run until 06 UTC on May 21, 

when all convection had exited the area of study. Output from this free forecast was 

archived every 5 minutes.  
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3.4 Comparing the Nature Run to Reality 

One of the components of a valid OSSE is to have the modeled atmosphere in the 

Nature Run accurately represent the real atmosphere (hereafter called Reality). Typically, 

in larger scale OSSEs where the Nature Run is integrated for multiple days to months this 

is done by computing model climatology statistics and comparing these to real 

climatological statistics (Masutani et al. 2010). However, because this OSSE focuses on 

an 18 h period, a modified criterion will be set. Since one of the main goals of this study 

is to reproduce the convective initiation across south central Oklahoma, a qualitative 

comparison is made to determine if the Nature Run accurately captures this convection 

and its subsequent evolution. Additionally, other surface fields are analyzed for 

comparison. It should be noted that an exact recreation of the actual meteorological 

events, such as exact placement of individual supercell storms, is not required for a valid 

Nature Run. What is required is a meteorologically sound representation and evolution 

Figure 3.5: Vertical levels of the ARPS (61 levels - black) and WRF (50 levels - red) models 

used in this study (A), and a closer look at distribution of model levels in the lowest 5 km 

(B).  

A B 
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of the mesoscale environment as a whole, following the precedent set by Tong and Xue 

(2005) and Gasperoni et al. (2013) whose nature runs contained realistic initiation and 

evolution of convective storms.  For comparison in this study, Nature Run plots of 

composite reflectivity are compared to composite WSR-88D radar mosaics from the 

Southern and Central Plains while surface dewpoint and wind fields are compared to 

objectively analyzed Mesonet surface observations.  

 Plotting and comparing composite reflectivity from the Nature Run to Reality 

gives an idea of how accurate the ARPS model integration represents the convective 

evolution on May 20th. Beginning at 12 UTC it can be seen that as a whole, the ARPS 

Nature Run captures the morning set up relatively well. Storms that were ongoing in 

southeastern Kansas and southwestern Missouri are present in the Nature Run, through 

storm intensity and coverage is higher in the Nature Run (Figure 3.6). This is likely due 

to stronger convergence in the Nature Run along the warm front than was occurring in 

Reality as suggested by the surface dewpoint plot in Figure 3.7. Here it can also be seen 

that the overall mesoscale environment is recreated accurately with a dryline present 

across western Oklahoma. At first glance the small-scale wave features present in the 

surface dewpoint plot in the Nature Run appears to be too noisy when compared to 

Reality. However, this is misleading as the average station spacing for the Oklahoma 

Mesonet is roughly 35 km (Brock et al. 1995) and therefore is not able to fully resolve 

smaller scale features that may have been present in Reality.  

 By mid-morning at 15 UTC, the initial convection present in the Nature Run has 

grown upscale and moved eastward into southern Missouri. While this convection had 

dissipated in Reality, there is a secondary line of storms along the Kansas/Missouri border 
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that is present in Reality. Additionally, the light precipitation that was occurring over 

northwest Oklahoma and south-central Kansas is accurately captured by the Nature Run. 

The biggest discrepancy comes from the spotty rain showers in southeast Oklahoma and 

southwest Arkansas that persisted through the morning hours in the Nature Run but not 

in Reality.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.6: Comparison of the observed WSR-88D composite reflectivity radar mosaic (left) 

and the ARPS Nature Run composite reflectivity (right) at 12 UTC May 20, 2013.   

Figure 3.7: Comparison of the observed Oklahoma Mesonet dewpoint temperature (deg F, 

fill) and 10 m wind vectors (barbs, knots) (left) and the ARPS Nature Run 2 m dewpoint 

temperature (deg F, fill) and 10 m wind vectors (barbs, knots) (right) at 12 UTC May 20, 

2013.   
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By 18 UTC the Nature run begins to show the first signs of convective initiation 

in south central Oklahoma and parts of northern Texas. In Reality, convective initiation 

began between 18 and 19 UTC along the Interstate 44 corridor to the north and west of 

the Nature Run’s convection. Figure 3.8a shows the similarity between the Nature Run 

and reality with regards to this convective initiation as both show growing discrete storms 

in south central Oklahoma at 1900 UTC, through the Nature Run’s storms are displaced 

slightly to the east and south. Storms initiating along the stationary boundary in north 

central Oklahoma and southeast Kansas in Reality are replaced by convection along a 

warm frontal boundary in the Nature Run. This is likely the result of a northward 

displacement of the surface low and stronger frontal boundary in the Nature Run. 

However, by 20 UTC the Nature Run does show convective initiation along the stationary 

boundary in eastern Kansas/southwest Missouri (figure 3.8b).  

 

 

 

 

 

 

 

 

 Figure 3.8: Comparison of observed WSR-88D composite reflectivity mosaic (top) and 

ARPS Nature Run composite reflectivity (bottom) fields valid at 19 (A), 20 (B), and 21 (C) 

UTC 20. May 2013.    

A B C 
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From this point on the evolution of the Nature Run continues to follow Reality, 

through a considerable time lag begins to develop. By 22 UTC the initial storms that 

began in south central Oklahoma have moved off to the northeast in both the Nature Run 

and Reality. However, a secondary round of convection occurs in south central Oklahoma 

in the Nature Run whereas Reality shows a broken line of storms that began in north 

central Texas and moved to the northeast into south central Oklahoma. But the Nature 

Run continues to follow Reality as the broken line of storms eventually begin to grow 

upscale into a more linear structure and move to the east into western and northwestern 

Arkansas. There is a slight time lag in the Nature Run as the eastward progression of the 

convective line is slower than Reality. Figure 3.9 shows this lag as the observed storms 

are well into western Arkansas while the southern end of the Nature Run line is still 

partially in southeastern Oklahoma. However, even with this phase shift, similar bow-

echo storm structures can be observed in both Reality and the Nature Run. 

 

 

 

 

 

 

 

 

A B C 

Figure 3.9: Comparison of observed WSR-88D composite reflectivity mosaic (top) and 

ARPS Nature Run composite reflectivity (bottom) fields valid at 22 (A), 00 (B), and 02 (C) 

UTC on 20/21 May 2013 respectively.    
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Another method for validating the Nature Run is to compare upper air soundings 

between the Nature Run and Reality. Overall, the sounding extracted from the Nature 

Run at 12 UTC OUN compares well with Reality’s observed sounding (figure 3.10). Both 

show a notable inversion with a temperature maximum near 850 hPa with an elevated 

mixed layer with nearly dry adiabatic lapse rates to just below 500 hPa. Additionally, the 

mid to low level moisture profile is captured well in the Nature Run when compared to 

Reality. The two thermal profiles also support very similar values of surface-based CAPE 

and similar magnitudes of CIN. It is noted that the Reality sounding does possess a 

warmer surface temperature and dewpoint, which accounts for the differences in CAPE 

and CIN values. The one notable difference between the two is the observed cloud layer 

with a shallow surface boundary layer with conditionally unstable lapse rates. This is not 

present in the Nature Run sounding, which does not have this shallow boundary layer.  

 

 

 

 

 

 

 

 

Figure 3.10: Comparison between the 12 UTC observed sounding from Norman, OK 

(left) and the 12 UTC Norman sounding taken from the ARPS Nature Run (right).     
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As mentioned, a special sounding was launched from OUN at 17 UTC to support 

forecasting operations that day (Figure 3.3b). This additional sounding allows for a 

comparison of the warm sector environment shortly before convective initiation. The 17 

UTC OUN sounding shows a thermal profile conducive to severe convection with nearly 

5000 J/kg of surface-based CAPE and no surface based CIN. There is a slight capping 

inversion still in place as quantified by the small amount of mixed layer CIN. Although 

many of the small-scale details of the corresponding extracted sounding are smoother, the 

Nature Run 17 UTC extracted sounding at OUN sounding shows very similar features 

with a dry adiabatic layer underneath a slight capping inversion, and low-level moisture 

extending to nearly 850 hPa (Figure 3.11). As in the observed OUN sounding, the Nature 

Run profile shows ample amounts of surface-based CAPE with no surface based CIN. 

The amount of CAPE in the Nature Run sounding is less than in Reality; this is likely due 

to the fact that the Reality profile has a slightly higher surface temperature and dewpoint.  

 These comparisons of composite reflectivity, surface fields, and upper air 

soundings all demonstrate that, despite a few differences, the Nature Run is capturing the 

general mesoscale environment and evolution. The Nature Run was able to correctly 

capture the convective initiation across south central Oklahoma and the subsequent 

convective evolution from discrete storms into a linear complex. This gives high 

confidence that the Nature Run satisfies the requirements that the simulated atmosphere 

in this OSSE is representative of reality. Thus, it can be expected that the experiments 

performed in this environment will give realistic results that will apply to operational 

numerical weather prediction. 
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3.5 WRF Control Run 

In order to examine the impacts of assimilating synthetic observations a Control 

Run of the forecast model is performed in which no observations are assimilated. Ideally, 

this control run uses a different numerical model from the Nature Run to avoid the 

“identical twin” problem and is sufficiently different enough from the Nature Run so that 

meaningful results can be obtained from the forecast experiments. If the control run and 

Nature Run are too similar, then drawing meaningful conclusions becomes very difficult. 

For this OSSE, the WRF-ARW is used for both the control run and the forecast 

experiments. To create the control run, a 237 by 201 grid-point, 3 km grid is placed over 

the state of Oklahoma (Figure 3.12) with 50 vertical levels (figure 3.5b). Thompson 

microphysics (Thompson et al. 2008), the MYNN planetary boundary layer scheme 

(Nakanishi and Niino 2006), Dudhia shortwave radiation scheme (Dudhia 1986), and the 

Figure 3.11: Comparison between the 12 UTC observed sounding from Norman, OK 

(left) and the 12 UTC Norman sounding taken from the ARPS Nature Run (right).     
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Rapid Radiative Transfer Model long wave radiation scheme (Mlawer et al. 1997) are 

selected, as these are commonly-used WRF physics options. Initial and boundary 

conditions for the control run, and all subsequent experiment forecast, are provided by 

the GFS forecast initialized on 12 UTC May 19, 24 hours prior to the Nature Run. This 

also marks the beginning of the WRF Control Run. The reason for this is to ensure that 

the control run is sufficiently different from the Nature Run, as discussed in section 3.6. 

The Control Run is then run for 42 hours until May 21, 06:00 UTC.  

 

 

 

 

 

 

 

 

3.6 Comparing the Control Run and Nature Run 

 An adequate control run will have a few key differences from the nature run. Since 

this study focuses on the initiation of convection across Southern Oklahoma, then an 

important key difference between the Control Run and Nature Run will be the placement, 

timing, and coverage of convective initiation. As previously discussed, the Nature Run 

contains discrete convective initiation between 1800 and 1900 UTC across southern 

ARPS Domain 
WRF Domain 

Figure 3.12: Spatial coverage of the ARPS domain 

(black) and WRF domain (blue).     
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Oklahoma south and west of Oklahoma City. This convection is largely absent in the 

Control Run (figure 3.13a) with convective initiation not occurring until 2200 UTC to the 

north and east of Oklahoma City (figure 3.13b). The ability of the simulated observations 

to correct these spatial and temporal errors regarding CI will be a key area to watch in 

evaluating the OSSE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Comparison between modeled composite radar reflectivity 

in the Nature Run (top) and the WRF Control (bottom).  Images are valid 

at 19 UTC (A) and 22 UTC (B) on 20 May, 2013.  

A B 
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A qualitative metric for assessing the difference between the Nature Run and the 

Control Run involves using the root mean squared error (RMSE). Figure 3.14 shows 

RMSE for surface pressure, temperature, dewpoint, and both wind components. These 

RMSE values indicate sufficient differences between the Nature Run and Control Run 

based off control RMSE values used in previous mesoscale OSSE studies (Gasperoni et 

al. 2013, Liu et al. 2009, Tong and Xue 2005). With a control run that is sufficiently 

different from the Nature Run any improvements in the OSSE forecast experiments can 

be attributed to the impacts of the synthetic observations.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: RMSE values between 12 UTC 20 May 2013 to 06 UTC 21 May 

2013 from the WRF Control run.   
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3.7 WRF OSSE Experiments 

In most OSSEs, the design and characteristics of the proposed observing system 

have already been established, but occasionally there is opportunity to investigate the 

characteristics and configuration of an observing system that, if implemented, could result 

in significant forecast improvements. In this study, experiments are not only performed 

on the current vision of the 3-D Mesonet but are also carried out to identify the optimal 

configuration of the network that will yield the most significant improvements to a short 

term convective forecast. A graphical interpretation of the OSSE system described here 

is given in Figure 3.15. 

 

 

 

 

 

 

 

 

 

 

Prior to performing any experiments with the simulated CopterSonde 

observations, an initial experiment is performed where only the simulated FNL and 

Figure 3.15:  A graphical interpretation of the UAV OSSE system. 
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Oklahoma Mesonet observations are input into the WRF forecast. This serves two 

purposes. The first is to investigate the impact of assimilating simulated observations 

from the current observing network. Ideally, the impacts from assimilating synthetic 

observations from current observing networks should result in a positive adjustment from 

the Control Run toward the Nature Run and mimic the impacts of assimilating real 

observations into an operational data assimilation system. This would indicate that the 

data assimilation system is giving realistic results. The second purpose is to provide a 

baseline for comparing experiments containing the UAV observations. Since comparing 

the results from the OSSE experiments to the Control Run would lead to overly optimistic 

conclusions, the results are instead compared to a WRF based on today’s complete suite 

of available observations. Making improvements to this forecast is much more 

challenging and provides a more realistic assessment of the magnitude 3-D Mesonet 

observations could have on NWP.  

 In order to allow for this comparison, each of the 3-D Mesonet OSSE experiments 

contains the synthetic observations from current observing networks (FNL and Mesonet). 

The first series of 3-D Mesonet experiments will focus on identifying the optimal 

maximum flight level for the UAV. In these experiments, hourly flights from 110 

Mesonet sites (Figure 2.1) are launched to a designated flight level. These flights begin 

prior to the top of the hour according to the expected flight duration (for example, a flight 

that is expected to last 15 minutes will launch 15 minutes prior to the top of the hour so 

that, as in the tradition of radiosonde launches, the data are considered valid at the top of 

the hour. These experiments do not take into account the time needed for the transmission 

of data from the launch site to the central data collection site. Experiments at designated 
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maximum flight altitude (MFA) begin at 3 km AGL, stepping down to 2 km, 1 km, and 

400 feet (123 m), the currently allowed MFA.  

Once the most impactful UAV MFA is identified, the second series of 

experiments will use this ideal flight level and begin varying the number of stations to 

identifying the minimum number of stations necessary to maintain the same impact on 

the forecast. While initially all 110 3-D Mesonet sites are included, this number is reduced 

with each experiment to 75, 50, 25, and 10 sites. It could be argued that this set of 

experiments holds the most value for designing and building a UAV network. Identifying 

the required number of stations prior to the implementation of the UAV network could 

save a considerable amount of money that would have otherwise been placed into stations 

that added little additional value to the forecast. Initial conditions for each of the OSSE 

forecast experiments comes from the 24-hour forecast output field from the WRF Control 

run at May 20 at 12:00 UTC. Lateral boundary conditions for each experiment come from 

the same GFS forecast used in the WRF Control run with a 3-hourly interval. 

 Through these experiments the ideal UAV observing network configuration can 

be identified. The benefits from this information not only include saving money, time and 

other resources, but will play a role in planning future UAV network configurations. 

However, since this “ideal” system ignores several regulatory and technological 

limitations (such as data transmission and quality checks processes), it must be 

acknowledged that the forecast impacts from the idealized system are likely an optimistic 

outcome. But, this will give a benchmark for which the UAV network can aspire to during 

implementation and can help highlight the need for adjustments in current UAV 

technology and regulation.  
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3.8 Results 

3.8.1 Maximum Flight Altitude 

3.8.1.1 Composite Reflectivity Comparison 

 Composite reflectivity is used in order to reveal all convective precipitation 

generated by the numerical models and give a better estimate of when convective 

initiation began. Figures 3.16 through 3.22 compare composite reflectivity fields from 

both the Nature Run, WRF Control run, and all OSSE experiments from 18 UTC through 

21 UTC in half hour increments. This time period is highlighted since capturing the 

convective initiation observed in the Nature Run is one of the primary goals of this OSSE.  
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Figure 3.16: Comparison between modeled composite radar reflectivity between the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) at 1800 on 20 May 2013.  
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Figure 3.17: Comparison between modeled composite radar reflectivity between the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) at 1830 on 20 May 2013.  

Figure 3.18: Comparison between modeled composite radar reflectivity between the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) at 1900 on 20 May 2013.  
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Figure 3.19: Comparison between modeled composite radar reflectivity between the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) at 1930 on 20 May 2013.  

Figure 3.20: Comparison between modeled composite radar reflectivity between the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) at 2000 on 20 May 2013.  
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Figure 3.22: Comparison between modeled composite radar reflectivity between the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) at 2100 on 20 May 2013. 
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Figure 3.21: Comparison between modeled composite radar reflectivity between the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) at 2030 on 20 May 2013.  
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At 18 UTC the value of assimilating data from the current observing networks can 

be observed as warm frontal convection and precipitation across northeast Oklahoma that 

is largely missing from the WRF Control is restored in this simulation. This is a positive 

indicator that the OSSE design is functioning properly as the addition of simulated 

observations from the current observing network produces an impact that is similar to 

what is observed in operational short-term NWP. This region of precipitation is similarly 

input into the WRF simulations with the inclusion of all UAV data sets.  

Noticeable differences between the UAV and “No UAV” forecast start to become 

apparent one hour into the free forecast at 1900 UTC (Figure 3.18) when convective 

initiation begins across south central Oklahoma in the 1, 2, and 3 km UAV forecasts. This 

CI follows closely with the Nature Run, which also shows CI across south central 

Oklahoma just 30 minutes prior at 1830 UTC. One notable difference between the three 

UAV forecasts producing CI is that the 2 km and 3 km forecasts initially produce storms 

with a linear structure. The 1 km forecast produces more discrete convection, but this 

appears less robust than the convection present in the 2 km and 3 km forecasts as well as 

the Nature Run.  

The 400 ft UAV and “No UAV” forecast follows suit 30 min later at 1930 UTC 

(Figure 3.19). However, the “No UAV” forecast is only able to produce a single dominant 

cell with areas of weaker reflectivity in the vicinity across south central Oklahoma. At 

this time the 1-, 2-, and 3-km MFA UAV forecasts show their convection growing as they 

propagate northeastward. It should be noted that the convective storms in the 2 and 3 km 

forecasts now take on a more discrete appearance such as the storms present in the Nature 

Run.  
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By 2000 UTC all WRF forecasts except for the WRF Control run show convective 

storms across south central Oklahoma similar to those present in the Nature Run (Figure 

3.20). Unlike the UAV experiments, the “No UAV” experiment shows the fewest 

convective cells and least development in those cells. While this is likely due in part to 

its later initiation of convection, it contains weaker convection than the similarly-timed 

400 ft experiment. This suggests that the addition of even low-level UAV data can have 

a positive impact on the short term forecast. However, it should be noted that the 1-, 2-, 

and 3-km MFA UAV forecasts show a nearly continuous line of precipitation interspersed 

with small convective cells. This is in contrast to the Nature Run, which shows a 

distinctive gap between the convective cells across south central Oklahoma that initiated 

along the dryline and the region of warm frontal precipitation to the north east. Similar 

trends can be observed in the “No UAV” and 400 ft forecasts during the 2030 and 2100 

UTC periods. By 2100 UTC (Figure 3.22) there is little differentiation between all WRF 

forecast experiments besides the exact placement of individual convective elements, and 

it is very hard to draw decisive conclusions on the improvements of the WRF forecasts 

from any experiment beyond 3 h of free forecast.  

But this should not undermine the significance of the short-term value added by 

the UAV observations to the WRF forecast. Assimilating at least 1 km of UAV data or 

more allowed for better timing of CI as well as a quicker convective growth as compared 

to the “No UAV” and 400 ft experiments.  

3.8.1.2 Surface RMSE Comparison 

 Figure 3.23 shows the root mean squared error (RMSE) associated with four 

different surface fields (surface pressure, 2m temperature, 2m mixing ratio, and 10 m U 
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and V wind components) (mean surface bias plots can be found in the appendix). In all 

fields except surface pressure, the value of the UAV data can be observed. For example, 

the surface mixing ratio RMSE shows a noticeable decrease during the data assimilation 

period as the UAV data are assimilated. Similar benefit can be seen in the temperature 

field as the addition of the UAV observations helps generate not only a better surface 

temperature analysis but also a better short-term forecast. A few hours into the free 

forecast the impacts of different convective processes becomes apparent as the RMSE 

values begin to diverge somewhat.  

Although not as clear as the temperature and mixing ratio signals, surface U and 

V wind components demonstrate some improvement to the analysis as well as the first 1 

to 2 hours of the free forecast. However, the impacts of convection on these fields is much 

higher than the thermodynamic fields and is apparent after the first few hours of the free 

forecast as the RMSE spread beings to increase. Additionally, the low-level winds are 

more susceptible to influence by the WRF’s PBL scheme selection. The MYNN scheme 

may induce more vertical mixing of the PBL winds and allow for higher surface winds 

than in the ARPS. This point is discussed further in section 4.1.2. 
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The surface pressure field is the only variable to not demonstrate an improvement 

to the analysis, though this result may be misleading. Upon closer inspection of the 

surface pressure field at 1800 UTC (figure 3.24) the Nature Run contains a well-defined 

surface trough that is largely over-deepened in the WRF control run. While the addition 

of current observing network data helps correct this low-pressure bias considerably, the 

“No UAV” analyzed surface pressure field lacks the clear structure of the Nature Run. 

Some of this trough structure information is brought back into the analysis by the UAV 

Figure 3.23: RMSE plots during the data assimilation cycling period (left of the vertical 

black line) and during the free forecast period (right of the black line) for surface pressure 

(upper left), 10 m U and V winds (upper right), 2 m mixing ratio (bottom left), and 2 m 

temperature (bottom right). 
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observations. However, in some areas of the UAV analysis the surface pressure is 

analyzed too high compared to the Nature Run such as in northwest Oklahoma and in far 

southeast Oklahoma. So even though the overall structure of the surface trough is 

improved with the assimilation of UAV observations, over correction of the WRF Control 

low bias results in worse than expected RMSE values.  

It is also apparent that the additional depth of UAV observations have little impact 

on the surface analysis. The RMSE results from all four surface fields show that there is 

little difference between the addition of 400ft or 3 km of UAV observations. This result 

is not surprising since only data in the lowest few hundred feet will cause any impact to 

the surface analysis. The depth of observations that impact the surface analysis can be 

adjusted by selecting a larger vertical influence radius in the data assimilation step of the 

OSSE. While adjusting this parameter may reveal a more meaningful impact of the 1, 2, 

and 3 km UAV observations, it is not explored here. 

 

 

 

 

 

 

 

 
Figure 3.24: Mean Sea Level Pressure (MSLP) comparisons between the Nature Run (A), 

WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), and UAV 

3km (G) forecasts at 1800 UTC.  
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3.8.1.3 Vertical Profile Comparison 

 In order to see the impact of the 1-, 2-, and 3-km MFA UAV observations vertical 

profiles of temperature, dewpoint, wind speed and direction are investigated. Vertical 

profiles below 500 mb were taken from the Nature Run, the WRF Control run, and all 

WRF experiments from the OUN radiosonde release location in Norman, Oklahoma. This 

location was chosen due to its close proximity to the convective initiation present in the 

Nature Run (as well as WRF experiments) and because this location is in between nearby 

UAV launch sites and GFS FNL insertion points (note that the Norman, OK Mesonet site 

was not used as a UAV launch location due to its co-location with an airport). Choosing 

a location for profile sampling too close to a UAV or FNL data point would likely skew 

the profiles in favor of one dataset or the other.  

 These vertical profiles of the MFA experiment analyses are given in Figure 3.25 

with vertical analysis errors displayed in figure 3.26. In both figures the impacts of adding 

UAV moisture observations to the DA process can be observed as the 3 km analysis 

captures the Nature Run’s moisture profile the best below 800 hPa. While the 400 ft UAV 

experiment does show improvements to the low-level moisture field, the profile quickly 

returns to the “No UAV” profile as data from the current observing networks dominates 

the analysis. Adding additional UAV observations incrementally improves the quality of 

the moisture profile analysis particularly in the low to mid-levels of the boundary layer 

with the addition of 2 or 3 km of UAV data. This can be seen as the 1 and 2 km gradually 

drift away from the Nature Run and toward the “No UAV” moisture plot. 
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Figure 3.25: Vertical profiles below 500 hPa of dewpoint (upper left), temperature (upper 

right), wind direction (bottom left), and wind speed (bottom right) valid at the analysis time 

of 1800 UTC. 
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Improvements to the 1800 UTC analysis can also be readily observed in the wind 

speed profiles (figure 17). Besides a nearly 2.6 ms-1 (5 kt) high bias in the near surface 

wind speed, the value of the UAV observations is seen in the low- to mid-levels and the 

wind analyses are brought closer to the Nature Run. As in the moisture profiles, the wind 

speed profiles quickly revert back to the “No UAV” experiment profiles as the FNL upper 

air observations dominate above the top of the UAV flight level. This directly shows the 

benefit of the extra depth of UAV observations. However, this benefit does not appear to 

carry over in the wind direction analysis as the addition of UAV data does not show any 

Figure 3.26: Vertical analysis error profiles below 500 hPa valid at 1800 UTC for the 

Maximum Flight Altitude tests.   
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strong signals of height dependency and only improves the analysis near the 850 – 700 

hPa layer.  

 Assimilating UAV observations allows for only slight improvements in the 

temperature profile analysis when compared to the “No UAV” experiment. While the 

considerable improvement over the WRF Control run is a signal that increases confidence 

in the validity of using the Mesonet and GFS FNL observations as proxies for all current 

observing networks, the impact of the UAV observations is confined to a small layer near 

800 mb during the 3-km UAV experiment. The reason for this limited improvement is 

likely because the “No UAV” experiment already creates a close representation of the 

Nature Run with low level temperature errors near +/- 1 C. This shows that there is less 

error to correct as compared to the other fields. The main improvement gained by adding 

UAV observations comes from better resolving the mid-level lapse rates. Figure 3.26 

shows this improvement well as the 3-km UAV analysis has less analysis error than the 

other experiments in the 850 – 750 layer. Although the 400-ft UAV analysis appears to 

have a better handle on the low level lapse rates, it is not clear if this is a true signal or 

due to noise in the low-level temperature fields. 

3.8.1.4 Cross Section Comparison 

 One of the main objectives of the 3-D Mesonet is not only to improve observations 

of the boundary layer, but to also promote better analysis of the boundary layer in NWP. 

Added benefit from the addition of the UAV data can be determined through inspection 

of cross sections through the PBL. The cross section line (Figure 3.27) was chosen such 

that dryline details can be observed in each model run. Only the bottom 4 km AGL of the 

boundary layer are displayed since the deepest UAV dataset only extends up to 3 km 
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AGL. While a few minor variations may exist above 4 km due to vertical influence of the 

3 km UAV data, all substantial differences between the forecast fields are expected below 

this 4 km ceiling. Cross sections of mixing ratio and equivalent potential temperature 

(theta-e) are taken since both variables are conserved values for an air mass (assuming no 

phase changes occur to influence the mixing ratio values). 

 

 

 

 

 

 

 

 

 

3.8.1.4.1 Mixing Ratio Cross Section Comparison 

 The cross sections of mixing ratio at the analysis time of 1800 UTC show 

distinguishing differences between the WRF experiment forecasts (Figure 3.28). Cross 

sections of mixing ratio through the Nature Run reveal a dome-like moist layer beneath 

2 km characterized by mixing ratios of 12 g/kg or greater with a maximum of 16 – 18 

g/kg below 1.2 km and centered across southern Oklahoma (approximately between -

95.4 ̊ and -97.5 ̊). Although a dryline can be seen between roughly -97.4 ̊ and -98.0 ̊ 

Figure 3.27: The black line shown here on the WRF domain 

represents the sampling location for the cross-section analyses. 
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degrees, the tightest moisture gradient is observed above the surface dryline between 1 

and 2 km MSL. The WRF control run, and similarly the “No UAV” experiment, analyzed 

a layer of boundary layer moisture that is much shallower compared to the Nature Run 

with mixing ratio values of 12 g/kg found well below 1.5 and 2 km MSL respectively. 

However, the “No UAV” experiment did improve the analysis by capturing the “dome” 

shape of the richer boundary layer moisture below 2 km.  

 Further improvements to the boundary layer moisture analysis are made with the 

addition of the UAV observations. The 400 ft UAV experiment introduces more moisture 

into the analysis with a region of mixing ratios in the 16 – 18 g/kg range in roughly the 

same location as the Nature Run. This improvement is likely due to the higher spatial 

frequency of the UAV observations that were able to capture this moist layer better. 

However, the overall depth of the moisture layer (here defined as where mixing ratios are 

12 g/kg or greater) does not change significantly. This is an expected result from the 400 

ft experiment since the low-level observations do not sample the full depth of this moist 

layer, and therefore mirror the “No UAV” analysis above the lower levels.  

 However, the 1-, 2-, and 3-km UAV experiments do sample most, if not all, of 

this moist layer, and this added information is reflected in the analyses. The 1-km UAV 

analysis begins to show a more “dome” like shape to the region of higher mixing ratios 

as in the Nature. These details are further refined is the 2- and 3-km UAV analysis as the 

moist layer takes on more characteristics of the moist layer in the Nature Run including 

removing a region of dry air and increasing the moisture gradient between 1 – 2 km MSL 

(Figure 3.28). One notable difference between the 2- and 3-km UAV experiments are the 

slight ripples in the tight moisture gradient between 1 and 2 km MSL. It is difficult to 
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determine if this is due to noise accumulation through the data assimilation cycling or if 

it is due to analyzed precipitation ongoing in the vicinity of the cross section at 1800 UTC 

as seen in figure 3.18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28:   Cross section plots of mixing ratio from 0 to 4 km above MSL for the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) WRF analyses valid at 1800 UTC 20 May 2013.  

Figure 3.29:   As in figure 20, except cross sections are valid at 1900 UTC.  
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 One hour into the WRF experiments’ free forecasts the impacts of the UAV 

observations can still be observed (Figure 3.29). While the “No UAV” forecast has lost 

all mixing ratios greater than 16 g/kg, all UAV forecasts maintain higher moisture values 

in accordance with the Nature Run. This loss of moisture can also be observed in surface 

dewpoint fields at 1800 and 1900 UTC (Figures 3.31 and 3.32). Although all analyses 

begin with similar dewpoint fields at 1800 UTC, one hour into the free forecast the No 

UAV forecast dries out across south central Oklahoma while moisture is maintained in 

this region with the addition of more UAV observations. The greater low- to mid-level 

moisture added by the UAV observations is likely helping keep surface dewpoints high 

as boundary layer mixing occurs.   

Additionally, broad lifting can be observed in the Nature Run as the moist layer 

begins to deepen above 2 km MSL. This lifting can also be observed in the 2- and 3-km 

UAV experiments as their respective moist layers increase in height above the 2 km MSL 

level. This effect can also be observed to a lesser degree in the 1 km UAV forecast. This 

Figure 3.30:   As in figure 20, except cross sections are valid at 2000 UTC.  
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result is consistent with the early CI that begins around 1900 UTC in the 1, 2, and 3 km 

UAV forecasts.  

By 2000 UTC the lift can be observed in the WRF Control and “No UAV” 

experiment, while convective processes begin to dominate in the Nature Run and UAV 

forecasts (Figure 3.30). This is readily apparent in the 2- and 3-km UAV forecasts as 

narrow upward (downward) plumes of moist (dry) air are seen indicating potential 

updrafts (downdrafts). However, the increased moisture inserted by the UAV 

observations maintains through the first two hours of all UAV forecasts as in the Nature 

Run. It should also be noted that the 400 ft UAV experiment does compare fairly well to 

the moist layer structure observed in the Nature Run in both the first and second hours of 

the free forecast (1900 and 2000 UTC). While this may be an encouraging sign, it is not 

clear whether this is a strong indicator of forecast skill. 
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Figure 3.31: 1800 UTC analysis of 2m dewpoint for the Nature Run (A), WRF 

Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), and 

UAV 3km (G). 
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3.8.1.4.2 Equivalent Potential Temperature Cross Section Comparison 

 Similar to the cross sections of mixing ratio, cross sections of theta-e are used to 

analyze and highlight improvements in the final analysis of the WRF experiments at 1800 

UTC and through the first two hours of the free forecast through CI. Since theta-e is 

dependent on moisture content the cross sections of theta-e are similar to the mixing ratio 

cross sections but highlight subtle differences in the boundary layer temperature and 

structure (Figure 3.33).  

 

 

 

 

 

Figure 3.32: One hour 2m dewpoint forecast valid at 1900 UTC for the Nature Run 

(A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km 

(F), and UAV 3km (G) forecasts. 
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Figure 3.33: Cross section plots of theta-e from 0 to 4 km above MSL from 0 to 4 km above 

MSL for the Nature Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km 

(E), UAV 2km (F), and UAV 3km (G) WRF analyses valid at 1800 UTC 20 May 2013.  

Figure 3.34: As in figure 25 except representing a one hour forecast of theta-e cross section 

valid at 1900 UTC 20 May 2013. 
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For example, the Nature Run theta-e cross section at 18 UTC reveals a similar 

“dome” appearance to the higher theta-e air mass beneath 2 km MSL, but also reveals a 

small, secondary vertical plume of 354 K theta-e values as well as better detail in the 

thermal structure above the higher theta-e values at the surface. As in the mixing ratio 

cross sections, the WRF Control run captures the higher theta-e values near the surface 

but maintains a shallow layer of richer boundary layer air. The addition of data in the “No 

UAV” experiment corrects this shallow boundary layer but washes out the higher values 

near the surface. However, this data information is captured by the UAV observations 

and re-inserted into the 1800 UTC analysis. The inclusion of all UAV data helps resolve 

the Nature Run’s “dome” shape as well as re-introduces the subtle secondary elongation 

of higher theta-e values near the surface in all UAV analyses except for the 1 km UAV 

analysis.  The added benefit of the UAV observations is further demonstrated by 

comparing the 400-ft and 2-km analyses. In the Nature Run, the 344 K isotherm extends 

Figure 3.35: As in figure 25 except representing a two-hour forecast of theta-e cross section 

valid at 2000 UTC 20 May 2013. 
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2 km MSL. This information is not captured well by the 400-ft UAV analysis as the 344 

K isotherm only reaches to nearly 1.5 km MSL but including 2- or 3-km UAV 

observations helps bring the 344 K isotherm to just under the 2 km MSL mark.    

 The higher theta-e air inserted into the analysis by the UAV observations 

maintains through the first hour of the free forecast and produces better boundary layer 

structure than the WRF Control and “No UAV” experiment by 1900 UTC (Figure 3.34). 

As with the mixing ratios, there is evidence of boundary layer lift as higher theta-e values 

begin to stretch upward in both the Nature Run and all WRF experiments. However, the 

UAV experiments, particularly the 3-km UAV experiment, demonstrate greater vertical 

elongation than the “No UAV” forecast. Although the theta-e gradient present in the 

Nature Run is not resolved well by any WRF forecast this is likely due to coarser WRF 

grid spacing. By 2000 UTC (Figure 3.35) the impacts of CI are evident in the 1-, 2-, and 

3-km UAV forecasts as discussed with the mixing ratio cross sections. Although the 

higher theta-e values are maintained in all UAV forecasts, it is also noted that a warm 

bias is present near the surface in all UAV forecasts. By 2100 UTC convective influences 

begin to dominate in many of the cross sections, making comparisons difficult beyond 

this point. 

3.8.1.5 Comparison of Convective Available Potential Energy (CAPE) 

 In order to gauge the value of the UAV observations on the analysis and short-

term forecast over the entire domain as a whole it is beneficial to investigate 

meteorological parameters that encompass multiple components of the numerical 

environment. Two such parameters are convective available potential energy (CAPE) and 

convective inhibition (CIN) due to the fact that they incorporate information on both the 
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low-level temperature and moisture fields as well as information on lapse rates through 

the atmosphere. In this study, two forms of CAPE and CIN are inspected. The first is 

CAPE/CIN generate by lifting the most unstable parcel of air at each grid point 

(MUCAPE/MUCIN), and the second is mixed layer CAPE and CIN (MLCAPE/MLCIN). 

Here MLCAPE/MLCIN is calculated by averaging the CAPE/CIN values of all parcels 

within the lowest 100 hPa of the atmosphere at each grid point. Although MLCAPE/CIN 

is typically found by lifting a parcel using layer-averaged theta-e and qv values, the 

formulation described here is substituted as a proxy for quick comparative purposes. 

 Figure 3.36 compares the MUCAPE field of the Nature Run to the WRF control 

and all WRF experiment 1800 UTC analyses. In the Nature Run’s MUCAPE field this is 

a plume of higher MUCAPE values of 3.5 – 4.5 kJ/kg extending from central Oklahoma 

south/southwestward into northern Texas. This plume marks the edge of the most 

unstable air in close proximity to the dryline to the west where MUCAPE values decrease 

rapidly to zero and MUCIN increases. This zone of instability is present in a muted form 

in the WRF Control run with only 2 – 3 kJ/kg of MUCAPE and increased amounts of 

MUCIN across the domain. The assimilation of non-UAV observations improves this 

field across the domain as MUCAPE values increase to levels similar to the Nature Run. 

However, the highest MUCAPE values are displaced to the north and east with an 

additional region of higher MUCAPE across southeastern Oklahoma. Furthermore, the 

plume extending into Texas present in the Nature Run is not analyzed properly in the “No 

UAV” analysis. While this demonstrates that adding the current observing networks helps 

improve the analysis as in current operations, there is still room for improvement.  
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 This improvement is provided by the assimilation of UAV observations. The 

addition of the 400-ft UAV observations begins to reduce the erroneous region of high 

MUCAPE across southeastern Oklahoma as well as slightly extending the plume of 

higher MUCAPE values southward as in the Nature Run, though this is not as complete 

as in the other UAV analyses. Beginning with the 1 km UAV analysis, the southward 

extension of the plume of higher MUCAPE values becomes apparent. These plumes do 

not extend as far southward into Texas as the Nature Run, but this is simply because there 

are no UAV observing stations positioned across Texas, thus limiting the value added 

outside of Oklahoma. It can be noted that the 1-, 2-, and 3-km UAV analyses all contain 

similar values of MUCAPE across the domain, suggesting that the most unstable layer 

lies somewhere in the lowest 1 km. Additionally, it can be noted that there is a general 

high bias in the MUCAPE fields across southcentral Oklahoma. This is likely due to the 

low- to mid-level lapse rates present in the WRF UAV analyses. Looking back at Fig. 

3.33 the region of the cross section above 3 km MSL appears to be colder in the WRF 

analyses than in the Nature Run while the near-surface theta-e values are roughly similar. 

This suggests that the low- to mid-level lapse rates are slightly steeper in the UAV 

analyses and therefore generate higher MUCAPE values.  
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Figure 3.36: 1800 UTC analysis MUCAPE (fill) and MUCIN (contours) for the Nature Run 

(A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), and 

UAV 3km (G) model runs. 

Figure 3.37: One hour forecast for MUCAPE (fill) and MUCIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) model runs valid at 1900 UTC. 
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Figure 3.38: Two hour forecast for MUCAPE (fill) and MUCIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), 

and UAV 3km (G) model runs valid at 2000 UTC. 

Figure 3.39: 1800 UTC analysis MLCAPE (fill) and MLCIN (contours) for the Nature Run 

(A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), and 

UAV 3km (G) model runs. 
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One hour into the WRF free forecasts MUCAPE values across the domain 

decrease for all WRF experiment forecasts (Figure 3.37). However, the 1, 2, and 3 km 

Figure 3.40: One hour forecast for MLCAPE (fill) and MLCIN (contours)for the Nature Run 

(A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), and 

UAV 3km (G) model runs valid at 1900 UTC. 

Figure 3.41: Two hour forecast for MLCAPE (fill) and MLCIN (contours)for the Nature Run 

(A), WRF Control (B), No UAV (C), UAV 400ft (D), UAV 1km (E), UAV 2km (F), and 

UAV 3km (G) model runs valid at 2000 UTC. 
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forecasts maintain higher MUCAPE values across southern Oklahoma in accordance with 

the Nature Run at 1900 UTC. This trend continues through 2000 UTC (Figure 3.38) as 

ongoing convection begins to contaminate the MUCAPE and MUCIN fields. Despite the 

convection, the 1-, 2-, and 3-km forecasts continue to support higher MUCAPE across 

southern and central Oklahoma compared to the “No UAV” forecast, suggesting value 

added to the short-term forecast by the UAV observations. 

 WRF experiment analyses rank very similar when comparing MLCAPE/MLCIN 

(Figure 3.39).  As with MUCAPE, the Nature Run exhibits a plume of higher MLCAPE 

values extending from central Oklahoma south/southwestward into north Texas 

characterized by MLCAPE values in the 3.5 – 4 kJ/kg range. Although the WRF Control 

run captures a meridionally oriented plume of instability, it does not capture these 

MLCAPE values well and shows the warm sector capped with MLCIN values of 50 to 

100 J/kg. While the addition of data in the “No UAV” experiment eliminates this capping, 

it does not adequately capture the MLCAPE plume to the south and generates too much 

MLCAPE across the southeastern portion of Oklahoma.  

 As with MUCAPE, the addition of UAV observations in the 400 ft UAV 

experiment does alter the MLCAPE field slightly towards the Nature Run, but the greatest 

benefits are not observed until at least 1 km of UAV data is added. Figure 3.39 shows this 

improvement to the analysis. As with the MUCAPE field, MLCAPE differs only slightly 

among the 1-, 2-, and 3-km UAV analyses and there is a slight over production of 

MLCAPE along the instability plume near the Oklahoma/Texas border, likely again due 

to lapse rate differences. Since MLCAPE considers only parcels in the lowest 100 hPa of 

the atmosphere, these similarities between the 1-, 2-, and 3-km analyses are not surprising 
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as the additional data above the lowest 100 hPa will only indirectly influence the near-

surface thermodynamic profile and will adjust only the lapse rate profile above the 

surface.  

 Similar to the MUCAPE forecasts, MLCAPE one and two hour forecasts (Figures 

3.40 and 3.41) show the quick reduction in instability in the “No UAV” experiment as 

well as the 400 ft UAV experiment. However, higher MLCAPE value are maintained in 

the 1-, 2-, and 3-km UAV forecasts. Although these values are not as high as those present 

in the Nature Run, this result demonstrates a prolonged adherence to the Nature Run that 

is quickly lost in the No UAV and 400 ft experiments. This rapid loss of instability is 

likely related to the loss of higher theta-e air near the surface as observed at 1900 and 

2000 UTC in Figures 3.33 and 3.34 in the No UAV and 400-ft UAV cross section 

forecasts. 

3.8.2 Station Density 

 One of the more beneficial aspects of an OSSE is the ability to identify the 

network density that will give the best results with the least number of observation points. 

This information has the potential to save both up-front costs on instruments and 

equipment, but would also help reduce long-term maintenance cost. For this experiment, 

tests were performed using networks consisting of 75, 50, 25, and 10 stations. Station 

selection for the 75-station network were taken from the original 110 Mesonet sites based 

on station density (i.e. regions with high station density were reduced while regions with 

station scarcity were maintained) with the goal of keeping a uniform station distribution. 

Additionally, select stations were removed to incorporate a better sense of realism. For 
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example, stations near the Oklahoma City metro were removed first to account for the 

likelihood that UAVs would not be allowed to fly near highly-populated areas.  

Station selection for the 50-station network removed stations from the 75-station 

network with the same goal of maintaining a relatively uniform station distribution while 

keeping station consistency between experiments. Each of these networks can be seen in 

Figure 3.42. 

 

 

 

 

 

 

 

 

 

 

 

 

75 Stations 50 Stations 

25 Stations 10 Stations 

Figure 3.42: Four possible 3-D Mesonet configurations with varying station 

densities. 



85 

 

Since UAV flights up to 1 km provided reasonably good analyses of the Nature 

Run and initiated convection by 1900 UTC, this level was chosen as the UAV flight 

altitude for all network density experiments. This altitude represents a good balance 

between adding the benefits to the analysis and convective forecast that were observed 

with the 1-, 2-, and 3-km MFA experiments while maintaining reasonable operational 

flight parameters.  The original 1-km MFA experiment represents an additional 110-

station network (hereafter called 110-station network, see Fig. 2.1) to include in 

comparisons. 

3.8.2.1 Composite Reflectivity Comparisons 

 As with the MFA experiments, composite reflectivity is employed here to 

highlight the differences among the network experiments and to best identify times of 

convective initiation, as seen in Figures 3.43 through 3.47 As with the MFA experiments, 

the most notable differences among the network experiments are found within the first 

few hours of the free forecast. After this point the differences between experiments are 

minimal. As expected, none of the reduced network configurations produce as robust 

convection by 1900 UTC as the original 110 station network. The only exception to this 

is the 10-station network. This interesting result is not considered to be realistic and is 

discussed further in subsequent sections. The 75, 50, and 25 station networks all show the 

initial stages of convective initiation at 1900 UTC with the 25-station network showing 

slightly more developed convective cells. By 2000 UTC all three experiments show 

similar convective cells in the same region as the original 110 station network. This result 

suggests that the lower density, 25-station network may perform as adequately as a 50 or 
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75 station network. However, compared to the No UAV experiment these appear to 

produce a drier solution with overall fewer regions of precipitation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.43: Composite Reflectivity forecast from the Nature Run (A) and WRF Control (B) 

and analysis fields from the No UAV (C), 110 Station (D), 75 Station (E), 50 Station (F), 25 

Station (G), and 10 Station (H) experiments valid at 1800 UTC.   

Figure 3.44: Composite Reflectivity forecasts from the Nature Run (A), WRF Control (B), 

No UAV (C), 110 Station (D), 75 Station (E), 50 Station (F), 25 Station (G), and 10 Station 

(H) experiments valid at 1830 UTC.   
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Figure 3.45: Composite Reflectivity forecasts from the Nature Run (A), WRF Control (B), 

No UAV (C), 110 Station (D), 75 Station (E), 50 Station (F), 25 Station (G), and 10 Station 

(H) experiments valid at 1900 UTC.   

Figure 3.46: Composite Reflectivity forecasts from the Nature Run (A), WRF Control (B), 

No UAV (C), 110 Station (D), 75 Station (E), 50 Station (F), 25 Station (G), and 10 Station 

(H) experiments valid at 1930 UTC.   
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Figure 3.47: Composite Reflectivity forecasts from the Nature Run (A), WRF Control (B), 

No UAV (C), 110 Station (D), 75 Station (E), 50 Station (F), 25 Station (G), and 10 Station 

(H) experiments valid at 2000 UTC.   
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3.8.2.2 Surface RMSE Comparison 

  

 

 

 

 

 

 

 

 

 

  

Similar to the MFA experiments, comparing surface RMSE values for MSL 

pressure, 2-meter mixing ratio, 2-meter temperature, and 10-meter U and V winds in 

Figure 42 may help reveal information about the optimal UAV network configuration and 

the DA system’s dependence on horizontal resolution for producing the best analysis. 

While little impact to the surface fields were expected in the MFA tests where horizontal 

station spacing is held constant, the network density tests should demonstrate horizontal, 

as well as vertical, impacts to the analysis. 

Figure 3.48: RMSE plots during the data assimilation cycling period (left of the vertical 

black line) and during the free forecast period (right of the black line) for surface pressure 

(upper left), 10 m U and V winds (upper right), 2 m mixing ratio (bottom left), and 2 m 

temperature (bottom right). 
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Comparing surface RMSE values from the network density experiments (Figure 

3.48) immediately suggests a need for high-density networks. In every field the 110-

station network contains lower RMSE values than the other network experiments. 

Interestingly, the remaining network analyses create similar analyses that compare well 

with the No UAV experiment in some fields (such as temperature and pressure). This is 

likely due to the network density differences between the FNL, Mesonet, and 

experimental UAV networks. While the FNL network inserts data at around 80 locations, 

the first UAV experiment only inserts data at 75 locations. Since the FNL network now 

has a higher spatial density than the UAV network, it is likely creating a greater influence 

than the UAV network at the surface. It should be noted that this effect may also be due 

to the choice of horizontal correlation lengths during the ADAS procedure.  

Additionally, the higher RMSE values in the UAV experiments’ pressure, mixing 

ratio, and temperature fields during the first two hours of the DA cycling (Figure 3.48) 

may be due to noise being sampled from the Nature Run itself. Even though the ARPS 

begins a warm-start free forecast at 12 UTC there may still be high-frequency noise in 

the surface fields that had not been smoothed out through the model integration. As this 

noise settles out through 18 UTC, more representative observations are taken at the 

“observation times” and allows for a better analysis by the end of the DA cycling period. 

This issue is addressed further in section 4.2.  

3.8.2.3 Vertical Profile Comparison 

 Vertical profiles of temperature, dewpoint, wind speed, and wind direction were 

again sampled at OUN (Norman, Oklahoma) to compare how well each of the network 

experiments captured the Nature Run environment. Figures 3.49 and 3.50 show the 
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vertical analyses and errors for each experiment, including the WRF Control and No UAV 

experiments. Although the surface RMSE results suggest that there is no improvement to 

the analysis with lower density UAV networks, the vertical profiles counter this by 

showing improvements in the vertical moisture, temperature, and wind speed in the low 

to mid-levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.49: Vertical profiles of dewpoint (upper left), temperature (upper right), wind 

direction (bottom left), and wind speed (bottom right) analyses valid at 1800 UTC.   
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Improvements to the low- and mid-level moisture, low-level wind speed, and in 

the mid-level temperature profiles can be observed in Figures 3.49 and 3.50. These 

analysis at times match closer to the Nature Run than the 110-station network. One 

possible explanation for is similar to the high RMSE noted in some of the surface fields 

in section in 3.8.2.2. If excess noise from the Nature Run is being directly sampled by all 

110 sites, then these errors may be accumulating through the DA cycle and manifesting 

as analysis errors at 1800 UTC. Likewise, with fewer observing sites less noise is being 

directly sampled and allows for a slightly improved analysis. While the surface RMSE 

data is a more robust measure of these errors, the single point profiles shown here may 

also be localized noise in the analyses themselves. This issue is discussed further in 

section 4.1.  

Figure 3.50: Vertical profiles of dewpoint (upper left), temperature (upper right), wind 

direction (bottom left), and wind speed (bottom right) analyses errors valid at 1800 UTC.   
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3.8.2.4 Cross Section Comparison 

Just as with the MFA experiments, analyzing cross sections of both mixing ratio 

and equivalent potential temperature provides beneficial information on the ability for 

each network density experiment to re-create the boundary layer structure of the Nature 

Run. Each cross section is taken from the same line across the domain depicted in Fig. 

3.27. Additionally, each cross section inspects the lowest 4 km MSL of the atmosphere, 

which should be more than sufficient considering all UAV flights in the network density 

experiments only reach 1 km AGL. These cross sections are particularly important for 

the network density experiments as they show both the horizontal and vertical impacts of 

the various UAV networks on the analysis.  

3.8.2.4.1 Mixing Ratio Cross Sections 

 Cross sections of mixing ratio at the 1800 UTC analysis time are given in Figure 

3.51. One of the most notable observations is the excess moisture observed below 2 km 

MSL in the 10-station network experiment with mixing ratios between 18-20 g/kg. This 

is consistent with Fig. 3.54 that shows the extent of this moisture bias in the low levels as 

compared to the Nature Run. This also explains why this excess moisture was not 

observed in the OUN sample profile as this moisture plume is mainly confined to southern 

Oklahoma. Comparing this cross section to the No UAV and WRF Control cross sections 

suggests that the source of this excess moisture is not being artificially introduced by the 

WRF initial conditions, the GFS LBC (up to 1800 UTC), or the simulated FNL and 

Mesonet obs. The 925 hPa dewpoint analysis from the 10-station experiment at 1700 

UTC (not shown) shows the early stages of a localized region of excess moisture. This 

suggests the possibility that a UAV observation with a particularly high moisture 

measurement was accepted in the analysis, unmodified due to the lack of nearby UAV 
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stations, and the error allowed to propagate through to the 1800 UTC analysis. Looking 

at the simulated UAV data from a UAV site nearest to the excessive moisture plume in 

Figure 3.54 shows that there appears to be a slight high bias in the simulated dewpoint 

data (Figure 3.55). The possible sources for this observation error are discussed further 

in section 4.1.2. Besides the high moisture bias, the 10-station network analysis shows a 

shallower plume of boundary layer moisture as well as a more diffuse moisture gradient 

on the western edge of the moist sector (roughly at -98.0 longitude).  

Another noteworthy observation is the similarities among the 75, 50, and 25-

station network experiments. Each experiment analyzes a plume of boundary layer 

moisture extending above 1 km MSL with mixing ratios of 16 – 18 g/kg, similar to the 

Nature Run. Although the longitudinal extent of this moist plume is somewhat stunted, 

especially when compared to the 110-station network (1km UAV) experiment, the overall 

shape of boundary layer moisture cross section is captured well by all three experiments 

and represents an improvement over the WRF Control and No UAV experiments.  

One hour into the free forecast the similarities among the three experiments 

continue as each cross section continues to show identical boundary layer moisture 

features and compare well to the 110-station network forecast. Besides lacking breadth 

longitudinally, these experiments compare well to the Nature Run at 1900 UTC and show 

signs of broad lift ongoing as the moist plume increases in depth. The 10-station network 

continues to show a high moisture bias and diffuse western moisture gradient. The 

upward stretching of the moist plume at around -97.0 degrees longitude suggest a region 

of stronger lift, possibly due to an updraft from the developing convection that was 

observed at this time (Fig. 3.52).  
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Figure 3.51: 1800 UTC analysis mixing ratio cross sections from 0 to 4 km above MSL for 

the Nature Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 

stations (F), 25 stations (G), and 10 stations (H). 

 

Figure 3.52: 1900 UTC forecast for mixing ratio cross sections from 0 to 4 km above MSL  

for the Nature Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 

50 stations (F), 25 stations (G), and 10 stations (H). 
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The updraft and downdraft region of a convective storm becomes more apparent 

in the cross section by 2000 UTC (Figure 3.53). Similar plumes of moist (ascending) and 

drier (descending) air, as well as the persistence of high (> 16 g/kg) boundary layer 

moisture are observed in the other UAV network experiments by this time but not in the 

WRF control and No UAV experiments. While the 50 and 25-station network forecasts 

Figure 3.53: 1900 UTC forecast for mixing ratio cross sections for from 0 to 4 km above 

MSL the Nature Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 

50 stations (F), 25 stations (G), and 10 stations (H). 

 

Figure 3.54: 925 hPa Dewpoint forecast and analysis for the Nature Run (left) and 

10-station UAV test (right) respectively valid at 1800 UTC.  

 

C A B D 

E F G H 



97 

 

begin to show high moist biases below 1 km MSL, they continue to retain the shape and 

overall structure of the Nature Run boundary layer. However, this excess moisture may 

help explain the slightly more robust convection observed in the 50 and 25-station 

network composite reflectivity fields at this time (Figure 3.47).  

 

 

 

 

 

 

 

 

3.8.2.4.2 Equivalent Potential Temperature Cross Sections 

 Cross sections of theta-e are analyzed for the network density experiments in the 

same manner as the maximum flight altitude experiments. Cross sections of the theta-e 

analyses at 1800 UTC are given in Figure 49 and reveal similar trends as those observed 

in the mixing ratio cross sections. Looking at the 10-station network analysis it becomes 

clear how the excess moisture below 1 km MSL is contributing to high theta-e values up 

to 362 K, 6 K warmer than the maximum Nature Run value. As with the mixing ratio 

cross sections, the theta-e cross sections reveal a more diffuse gradient in temperature 

Figure 3.55: Comparison of the Nature Run (black) and 

simulated UAV (green) dewpoint profiles sampled at 

1800 UTC at the Waurika, OK (WAUR) Mesonet site.  
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along the western edge of the higher theta-e air mass in the 10-station network analysis 

as well as a shallower layer of warm air.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.56: 1800 UTC analysis theta-e cross sections from 0 to 4 km above MSL for the 

Nature Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 

stations (F), 25 stations (G), and 10 stations (H). 

 

Figure 3.57: 1900 UTC forecast theta-e cross sections from 0 to 4 km above MSL for the 

Nature Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 

stations (F), 25 stations (G), and 10 stations (H). 
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Such inconsistencies are not as readily observed in the other UAV network 

density analyses, which generally capture the thermal shape of the Nature Run’s boundary 

layer fairly well. Although these analyses show improvements over the WRF Control 

1800 UTC forecast and the No UAV analysis, the 75, 50, and 25-station network analyses 

struggle to consistently capture the higher theta-e values in the lowest 1 km MSL of the 

Nature Run boundary layer. Lower temperatures are also noted east of -95.0 degrees 

longitude where all of the UAV network analyses, with the exception of the 110-station 

network, struggle to accurately capture the temperatures observed in the Nature Run.   

Trends observed in the mixing ratio cross sections for 1900 UTC are also evident 

in the theta-e cross sections (Figure 3.56. The 10-station network forecast continues to 

show a warm bias in the lower levels with a vertically stretched plume of higher theta-e 

air suggesting locally strong lift. The weak thermal gradient on the western edge 

continues to be evident as well as a poor overall shape to the boundary layer thermal 

Figure 3.58: 2000 UTC forecast theta-e cross sections from 0 to 4 km above MSL for the 

Nature Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 

stations (F), 25 stations (G), and 10 stations (H).  
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structure as compared to the Nature Run and other UAV forecasts. Despite struggling to 

accurately capture theta-e values near the surface, the 75, 50, and 25-station network 

forecasts show considerably good resemblance to the Nature Run, including capturing 

the low level thermal gradient. However, the value of all 110 stations can be observed 

here as the eastern extent of the 348-350 K temperatures and vertical extent of the > 328 

K temperatures is captured better by the larger observing network. By 2000 UTC the 

higher moisture values in the 50 and 25-station network forecasts are likely contributing 

to the higher theta-e temperatures near the surface as seen in Figure 3.57. Despite this, 

the UAV network forecasts continue to show reasonably good comparison to the Nature 

Run’s boundary layer thermal profile in terms of shape and vertical extent. At this point 

the impacts of convection on the boundary layer thermal profile are becoming clearer, 

especially in the 10-station network forecast. However, inspecting these cross sections 

reveals that while some detail is lost with a reduced number of stations, a reasonably good 

analysis and short term forecast of the boundary layer’s thermal structure can be obtained 

with fewer than 110 stations. 

3.8.2.5 Convective Available Potential Energy Comparisons 

 As with the MFA experiments, comparing MUCAPE and MLCAPE can help 

determining each network experiments’ ability to recreate the convective environment 

observed in the Nature Run. Both MUCAPE and MLCAPE are computed in the same 

way as described in section 3.8.1.5. Similar to the cross sections, plots of MU/MLCAPE 

highlight thermodynamic differences between the WRF UAV experiments across the 

entire three-dimensional domain. 
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Figure 3.60: 1900 UTC forecast of MUCAPE (fill) and MUCIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 stations (F), 

25 stations (G), and 10 stations (H). 

 

Figure 3.59: 1800 UTC analysis of MUCAPE (fill) and MUCIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 stations (F), 

25 stations (G), and 10 stations (H). 
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Figure 3.61: 2000 UTC forecast of MUCAPE (fill) and MUCIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 stations (F), 

25 stations (G), and 10 stations (H). 

 

Figure 3.62: 1800 UTC analysis of MLCAPE (fill) and MULIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 stations (F), 

25 stations (G), and 10 stations (H). 
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Comparing MUCAPE analyses at 1800 UTC (Figure 3.59) the 10-station network 

contains MUCAPE values much greater than the Nature Run or any experiment. This 

additional instability is a side effect of the excess low-level moisture observed in the 10-

Figure 3.63: 1900 UTC forecast of MLCAPE (fill) and MULIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 stations (F), 

25 stations (G), and 10 stations (H). 

 

Figure 3.64: 2000 UTC forecast of MLCAPE (fill) and MULIN (contours) for the Nature 

Run (A), WRF Control (B), No UAV (C), 110 stations (D), 75 stations (E), 50 stations (F), 

25 stations (G), and 10 stations (H). 
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station analysis in the 925 hPa dewpoint analysis field (Figure 3.54) and the mixing ratio 

cross section (Figure 3.51). However, this helps explain why the 10-station network was 

able to produce convection prior to the other experiments. As with the 110-station 

network experiment, all station-density experiments were able to correct the region of 

low MUCAPE present in the WRF Control and No UAV experiments across southern 

Oklahoma and into northern Texas. As in the 110-station experiment, the network density 

experiments show a slight high bias in MUCAPE across far southern Oklahoma and 

northern Texas, though the smaller networks struggle to capture the higher MUCAPE 

values as observed in the Nature Run. Additionally, all the network experiments, with the 

exception of the 110-station experiment, introduce MUCIN across southeastern 

Oklahoma. While MUCIN is present in the Nature Run across portions of northern Texas, 

there is none across far southeast Oklahoma. This may be caused by the lower theta-e 

values across that part of the state as seen in the theta-e cross sections for each network 

experiment (Figure 3.56).  

 MUCAPE fields one and two hours into the free forecast period for each network 

density experiment are shown in Figures 3.60 and 3.61, respectively. At 1900 UTC the 

high bias in the 10-station network continues to be evident with the other network 

experiments containing only slightly higher MUCAPE values than the Nature Run. The 

placement of the greatest instability is shifted slightly southward in the network 

experiments as compared to the Nature Run as well as the 110-station experiment. By 

2000 UTC the 75, 50, and 25-station experiments continue to show high MUCAPE 

values, though this is likely a consequence of their slightly delayed CI whereas the 110 

and 10-station networks show MUCAPE reduction as convection continues to grow. This 



105 

 

suggests that these experiments are not generating convection due to a lack of instability 

or convective inhibition, but rather a weak or delayed forcing mechanism.   

 Analyzing MLCAPE values in a similar fashion reveals similar trends. The 1800 

UTC analysis of MLCAPE show similar results to the MUCAPE with all UAV 

experiments filling in the instability gap present in the WRF Control and No UAV 

experiments and the 10-station network displaying considerably higher MLCAPE values 

than the Nature Run. Furthermore, just as MUCIN was present over southeastern 

Oklahoma, all UAV network experiments possess MLCIN over the same region. As 

mentioned, the likely culprit for the convective inhibition is reduced theta-e values, and 

hence a more stable airmass, over this region as evidenced by the 1800 theta-e cross 

sections (Fig. 3.56).  

 One hour into the free forecast, the trends in the MLCAPE fields mirror those 

observed in the MUCAPE fields (Figure 3.62). The 10-station network continues to show 

higher MLCAPE than any other experiment and the Nature Run and is also showing signs 

of ongoing convection. While the 110-site network (the 1 km UAV experiment) also has 

ongoing convection at 1900 UTC, the MLCAPE values are lower compared to the other 

network experiments, likely due to CI that began just prior to 19 UTC (Figure 3.63). Once 

again, the 75, 50, and 25-station networks show an unstable and uncapped environment 

with 3 – 4.5 kJ/kg of MLCAPE. This further supports the notion that CI is not being 

hindered by a lack of instability or inhibition. MLCAPE fields at 2000 UTC (Figure 3.64) 

continue to show trends similar to those observed in MUCAPE with the 75, 50, and 25-

station networks showing the highest instability values compared to all other WRF 

experiments and the Nature Run. However, all experiments containing UAV observations 
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continue to show more representative MLCAPE fields in terms of magnitude and 

placement of the greatest instability when compared to the WRF Control and No UAV 

forecasts. Additionally, the 75, 50, and 25-station networks show similar MLCAPE and 

MLCIN fields even two hours into the free forecast, suggesting that all major features of 

the thermodynamic environment are captured even with the reduced network density. 
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Chapter 4 

4.1 Discussion and Conclusions 

4.1.1 Maximum Flight Altitude Summary 

One of the main goals of this work was to investigate the impacts of assimilating 

simulated UAV observations on short term numerical forecasts on convective initiation 

and boundary layer structure as well as identify the ideal characteristics of a hypothetical 

UAV observing network, specifically the ideal maximum flight altitude and network 

density. While assimilating UAV observations, even up to 3 km AGL, did not recreate 

the Nature Run exactly, as seen in the vertical profile plots and cross sections, the 

additional information provided by the UAV observations helped recreate boundary layer 

thermal structure and force convective initiation at a similar time and location compared 

to the Nature Run as observed in the composite reflectivity Figures (Fig. 3.18). This 

convection takes on a similar convective mode compared to the Nature Run, though the 

grid resolution of the WRF forecasts prevents exact replication. The benefits of the UAV 

data are most evident within the first one to three hours of the free forecasts, after which 

point all forecasts begin to diverge from the Nature Run in a similar fashion. But studies 

such as Weiss et al. (2008) describe similar difficulties in forecasting the downstream 

evolution of convection. 

It was also noted that for nearly all WRF analyses surface wind speeds showed a 

nearly 2.6 ms-1 (5 kt) high bias. This may be explained by differences in the PBL schemes 

used by both the ARPS and WRF-ARW models. While the ARPS used a non-local 

scheme for turbulent mixing, the WRF employed a local scheme. As described by Cohen 

et al. (2015), local and non-local PBL schemes can often explain differences in boundary 
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layer thermodynamic and dynamic structure. While it is possible that a small systematic 

high bias is present in all simulated observations, this difference in PBL schemes should 

be taken into consideration when evaluating low level wind results. Furthermore, it is not 

clear if such a high wind speed bias would present itself when compared to real-world 

observations instead of a numerical model.  

However, this should not take away from the benefits added to the forecast by the 

UAV observations within the first few hours of the forecast. Not only did the addition of 

UAV observations help reduce surface RMSE during this time (Fig. 3.23), but they also 

contributed to the production of better analysis and forecast of the boundary layer (Figs. 

3.28, 3.33), especially pertaining to boundary layer moisture. This better analysis and 

forecast in moisture and low-level theta-e helped create better analyses and subsequent 

forecasts of most unstable and mixed layer CAPE and CIN. The improved CI observed 

in the UAV forecasts is likely due to this improvement in the low level thermodynamic 

fields. Similar sensitivities between low level moisture and convective initiation have 

been observed in other mesoscale OSSEs such as Gasperoni et al. (2013). This asserts the 

idea that for CI forecasting purposes, frequent and accurate sampling of boundary layer 

moisture and temperature is critical.   

While some of the best results were observed in the 3 km UAV experiment in the 

form of better wind speed, boundary layer moisture and structure analyses, it can be 

argued that the results from the 1-, 2-, and 3-km experiments show no significant 

differences in the convective initiation forecast. Surface RMSE values already 

demonstrate that the height of the UAV flight plays a secondary role in the surface 

analysis and short-term forecast, and both most unstable and mixed layer CAPE fields 
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were identical for the three higher UAV flight analyses and forecasts. These results 

indicate that while some skill is gained by the addition of 400 ft. of UAV observations, 

there is a considerable improvement in the CI forecast by adding at least 1 km of UAV 

observations.   

4.1.2 Network Density Summary 

 One of the most important network configuration considerations is network 

density. In this work four different network densities were examined with 75, 50, 25, and 

10 UAV observation sites (with station spacing of roughly 56, 70, 106, and 199 km 

respectively) with UAV flights up to 1 km AGL. Since the 1 km MFA test incorporated 

110 UAV observing sites, it is used as a fifth network configuration for comparison 

purposes. In short, all UAV network density experiments were able to forecast CI by at 

least 1930 UTC (up to half an hour prior to the No UAV experiment). However, it is 

noted that much of this convection, especially for the 75, 50, and 25-station network tests, 

is much weaker than the 110-station network. Interestingly, the 10-station network 

experiment showed strong convection by 1900 UTC, though this is considered an 

unrealistic result due to a high bias in low level moisture as compared to the Nature Run.  

 The stronger convection associated with the 10-station experiment is not overly 

surprising given the higher moisture values. As mentioned, Gasperoni et al. 2013 noted 

sensitivity associated between low level moisture analyses and forecasts and convective 

initiation. Weisman et al. (2008), Schwartz et al. (2010), and Jankov and Gallus (2005) 

all mention strong sensitivities between the initial conditions and convective initiation 

with the WRF-ARW model. So not only did the excess moisture in the lowest 1 km MSL 

increase MUCAPE and MLCAPE, it is likely the culprit behind the stronger and earlier 
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convection. The reason why the excess moisture was placed in the 10-station network 

analysis but is not apparent in the other analyses is not as clear. 

One possible explanation is that this moisture represents the accumulation of 

forecast errors during the 6-hour assimilation cycling process. In their investigation of the 

impact of simulated observation errors on OSSE analysis errors, Prive et al. (2013) 

concluded that many of the errors in the analysis were the summation of both model errors 

and small observational errors that were propagated through the forecast. The observation 

errors added during each cycle of the data assimilation process are likely small. Hence, it 

is possible that one or more stations in the 10-station network introduced small amounts 

of excess moisture during the data assimilation cycling, particularly during the 1700 UTC 

analysis, that were not filtered out due to the lack of nearby UAV observations and the 

high weight applied to UAV observations relative to the other observing networks. Under 

higher-density networks, or with different correlation lengths used in ADAS, these 

observations may be effectively filtered out.  

Another possible explanation is that this extra moisture is a side effect of forcing 

by the GFS lateral boundary conditions. Since the 10-station network has fewer 

observations as input it is more susceptible to boundary condition influences. However, 

if this were the case then the addition of moisture should be noted in the WRF Control 

and No UAV forecasts as well. Looking at Figures 3.51, 3.52, and 3.53 show a slight 

increase in low level moisture during the 1800 to 2000 UTC time frame. While this is not 

as strong of a signal as in the 10-station network experiment, it may be a secondary 

contributing factor.  
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Regardless, the observation errors associated with both the proposed UAV 

network and the simulated current network as well as the ADAS correlation lengths may 

need further calibration for different network configurations to ensure realistic results are 

obtained. Despite this uncertainty, a general trend is noted that similar analyses and 

forecasts were produced by the 75, 50, and 25-station networks. Although the 110-station 

networks give the best boundary layer analysis and short-term forecast, the results 

presented here suggest that even a 25-station network might be able to provide some 

benefit to boundary layer analyses and short term convective forecasts. However, the 

impact of individual UAV stations may need to be considered here as all network density 

experiments contained a UAV site in south central Oklahoma (see Figs. 3.42) that may 

have allowed for both PBL moisture/theta-e cross sections as well as MU/MLCAPE 

fields that compared so well to the Nature Run by extending the higher CAPE values 

further south and east. It is not clear if the removal of this UAV station would allow for 

similar results to be presented and suggests analysis and forecast sensitivity to the 

placement of the UAV sites.  

4.1.3 General Conclusions 

The findings in the MFA and network density experiments both suggest that the 

addition of a network of in-situ observations taken by autonomous CopterSonde UAVs 

could provide benefits to both boundary layer analyses as well as short term convective 

forecasts. While these observations would likely not have a large impact on surface 

analyses, the real value would be obtained by sampling the low to mid-levels of the PBL. 

The sensitivity of the CI forecast on boundary layer moisture suggests that future 
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CopterSonde development should focus on high quality observations of boundary layer 

moisture.  

Although these results appear promising for the use of UAV technology in 

numerical weather prediction, a few caveats must be considered. The first is the 

dependency of the results on the convective environment. This study does not investigate 

the impacts of UAV observations on different convective regimes and scenarios such as 

high CAPE/low shear environments or when dealing with a linear squall line rather than 

discrete convection. This is particularly true for elevated convective environments in 

which boundary layer processes below 1 km may or may not play as significant a role. 

Additionally, the fact that any significant convective forecasting skill is lost after the first 

few hours when comparing UAV vs. No UAV forecasts may be a deterrent for those 

seeking longer duration benefits. Secondly, the sensitivity of this OSSE system to both 

observation and background errors, different parameterization schemes, and various 

sources for lateral boundary conditions is relatively unknown. Previous studies 

employing the WRF-ARW have noted these sensitivities (Jankov and Gallus (2005), 

Weisman et al. (2008), Schwartz et al. (2010), Cohen et al. (2015)), and the results found 

here suggest that such sensitivities may be impacting the forecasts, especially the network 

density forecasts. Additional sensitivities have been noted between the MYNN boundary 

layer scheme used in this study, the height of the WRF model top, and convective 

initiation (E. Fedorovich, personal communication, June 22, 2018). Finally, a calibration 

OSE has not yet been performed for this study to determine if the results of this OSSE 

system produce realistic results.  
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4.2 Future Work 

 Much of the future work possible with this research is focused around the caveats 

mentioned above. Perhaps the most beneficial addition to this research is to perform a 

calibration OSE. This OSSE has been set up with this calibration step in mind by 

simulating observations from the Oklahoma Mesonet. This way, real Mesonet 

observations can be used in the calibration OSE and the results can be easily compared 

to check for OSSE validity.  By verifying that the results and conclusions presented here 

are reasonable and realistic, researchers can have higher confidence that a real 3-D 

Mesonet network would yield similar results operationally.  

Sensitivity studies of this OSSE system should also be conducted to gain 

confidence in the results presented here. As mentioned, it is unknown weather similar 

results will be obtained under different convective regimes and storm modes and using 

different configurations of physical parameterizations, lateral boundary condition inputs, 

and observation/background errors. Along with iteratively changing WRF configuration 

settings, sensitivity testing could also be performed by using the WRF-ARW to create the 

Nature Run, followed by OSSE experiments performed with the ARPS model. Ideally, 

similar impacts should be noted between this alternate OSSE design and the current 

configuration presented here. 

Further testing of the 3-D Mesonet network can be performed with this OSSE. 

Beneficial information may be found by testing the impacts of CopterSonde flight 

frequency on the analysis and subsequent CI forecast. By identifying the optimal number 

of flights prior to CI, the real-world 3-D Mesonet may be able to save long term costs by 

reducing the wear-and-tear on hardware through a reduced number of flights. 
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Additionally, testing various configurations and placements of observing stations may 

reveal optimal placement of UAV site. For example, performing an experiment with 

UAV observation sites around the border of the domain in a “picket fence” arrangement 

may allow for an improved forecast by accurately capturing low level waves or plumes 

of moisture as they enter the domain. The station-density experiments could also be 

replicated using more appropriate correlation length scales during the data analysis step 

for the lower density networks. This will investigate if better analyses can be created 

using lower density networks such as the 25 or 10 station networks than what were found 

here. Additionally, tests can be performed to investigate how well the 3-D Mesonet and 

the CopterSonde can capture other meteorological phenomenon such as the nocturnal low 

level jet.  

Future work will also investigate the impact of noise in the ARPS Nature Run on 

the simulated observations and, subsequently, the WRF analyses and forecasts. As 

mentioned in sections 3.8.2.2 and 3.8.2.4, errors in the surface fields and low-level 

moisture fields may be artificially introduced by sampling noise from the Nature Run 

itself. Real atmospheric noise and variations are already accounted for in the simulated 

observation production by inserting artificial instrumentation and representativeness 

errors so sampling noise from the Nature Run may be creating worse analyses than 

expected. It is possible to gauge the impact of this noise-sampling issue by performing an 

OSSE experiment that assumes “perfect observations” and does not add any additional 

error to the sampled observations. This way, the amount of noise introduced by sampling 

the Nature Run can be assessed. If the 10 station experiment is performed again and the 

excessive moisture bias remains present, then it can be inferred that inappropriate 
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sampling of the Nature Run may be causing the effect. Different numerical sampling 

methods of the Nature Run may help produce not only improved simulated observations, 

but more realistic analyses and forecasts as well.  

Similarly, sensitivity tests should be performed to gauge the impacts of different 

magnitudes of observation errors assigned to the UAV observations. While previous 

OSSE studies have focused on this topic on a global scale (Prive et al. 2013), this OSSE 

set up may exhibit heightened sensitivity due to the high resolution of the models used 

and the known sensitivities of moisture on correct convective initiation forecasting. 

Identifying the allowable error limits may also influence future design and operation of 

the CopterSonde by setting observing error guidelines and goals.  

 Despite these caveats, the results from this OSSE indicate that a network of UAVs 

does have the potential to improve short-term numerical boundary layer structure and 

convective initiation forecasts. Although additional research is needed, this opens the 

door for further OSSE work with mesoscale in-situ observing networks but also widens 

the possible applications of UAV technology in the field of atmospheric science. 
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Figure A.1: Mean bias plots during the data assimilation cycling period (left of the vertical 

black line) and during the free forecast period (right of the black line) for surface pressure 

(upper left), 10 m U and V winds (upper right), 2 m mixing ratio (bottom left), and 2 m 

temperature (bottom right). 



127 

 

 

Figure A.2: Mean bias plots during the data assimilation cycling period (left of the vertical 

black line) and during the free forecast period (right of the black line) for surface pressure 

(upper left), 10 m U and V winds (upper right), 2 m mixing ratio (bottom left), and 2 m 

temperature (bottom right). 


